
ELPA Manual

User’s Guide and Best Practices

Version 2024.05.001

A. Marek, P. Karpov, T. Melson,
The ELPA developer team

Max Planck Computing and Data Facility

September 5, 2024

1

Contents

1 About ELPA 3
1.1 How to obtain ELPA . 3
1.2 Terms of use . 3
1.3 Current release . 4

2 Quick start guide 5
2.1 Sequence of steps to use ELPA . 5
2.2 Fortran example . 6
2.3 C/C++ example . 7

3 Installation guide 9
3.1 Dependencies . 9
3.2 Configuration . 10

3.2.1 Compiler and linker variables for configure 11
3.2.2 Compiler flags for vectorization and optimization 12
3.2.3 Configure options . 13
3.2.4 configure examples . 20

3.3 Building . 23
3.4 Complete installation example . 23
3.5 Troubleshooting . 24

3.5.1 Common configure problems . 24
3.5.2 Common make problems . 24
3.5.3 Common make check problems . 25

4 Compiling and linking against ELPA 26
4.1 Linking with pkg-config . 26
4.2 Linking without pkg-config . 27

5 Calling ELPA 28
5.1 API version . 28
5.2 Key-Value pairs . 29

5.2.1 Mandatory parameters . 29
5.2.2 Runtime options . 31

5.3 Math routines provided by ELPA . 32
5.3.1 Standard eigenvalue problem . 33
5.3.2 Generalized eigenvalue problem . 33
5.3.3 Auxillary routines . 34

5.4 Using ELPA without MPI . 35
5.4.1 Sequential mode . 35
5.4.2 OpenMP mode . 39

5.5 Using ELPA with MPI . 40
5.5.1 Plain MPI mode . 40
5.5.2 Hybrid MPI+OpenMP mode . 43

5.6 Using GPU acceleration . 43
5.6.1 Using GPU streams . 45
5.6.2 Using GPU solver libraries . 45
5.6.3 Using NCCL/RCCL communication libraries 46
5.6.4 Using several MPI tasks per GPU . 46
5.6.5 Other tips for using ELPA-GPU . 47

2

5.7 Using ELPA from Python . 47

6 Best practices 49
6.1 Autotuning for better performance . 49
6.2 Choosing the optimal BLACS grid . 52

6.2.1 Optimal BLACS grid dimensions . 52
6.2.2 Optimal BLACS layout . 54
6.2.3 ELPA test programs to find the best BLACS settings 54

6.3 Track ELPA timings in your application . 55

7 Troubleshooting 57
7.1 Debugging information . 57
7.2 Reporting bugs and issues . 57

8 Contributions guide 58

A Expert configure options 59

B Expert key-value runtime option pairs for setting the ELPA object 60
B.1 General runtime options . 60
B.2 Runtime options to control the standard solvers 61
B.3 Runtime options to control (parts of) the generalized EVP solvers 63
B.4 Expert runtime options for collective MPI operations 64

C Initialization of MPI and BLACS 66

D ELPA functions 68
D.1 elpa2_print_kernels . 69
D.2 elpa_allocate . 70
D.3 elpa_autotune_deallocate . 71
D.4 elpa_autotune_load_state . 72
D.5 elpa_autotune_print_state . 73
D.6 elpa_autotune_save_state . 74
D.7 elpa_autotune_set_best . 75
D.8 elpa_autotune_setup . 76
D.9 elpa_autotune_step . 77
D.10 elpa_cholesky . 78
D.11 elpa_deallocate . 80
D.12 elpa_eigenvalues . 81
D.13 elpa_eigenvalues_double . 83
D.14 elpa_eigenvalues_double_complex . 85
D.15 elpa_eigenvalues_float . 87
D.16 elpa_eigenvalues_float_complex . 89
D.17 elpa_eigenvectors . 91
D.18 elpa_eigenvectors_double . 93
D.19 elpa_eigenvectors_double_complex . 95
D.20 elpa_eigenvectors_float . 97
D.21 elpa_eigenvectors_float_complex . 99
D.22 elpa_generalized_eigenvalues . 101
D.23 elpa_generalized_eigenvectors . 103
D.24 elpa_get_communicators . 105
D.25 elpa_hermitian_multiply . 107

3

D.26 elpa_hermitian_multiply_double . 110
D.27 elpa_hermitian_multiply_double_complex . 113
D.28 elpa_hermitian_multiply_float . 116
D.29 elpa_hermitian_multiply_float_complex . 119
D.30 elpa_init . 122
D.31 elpa_invert_triangular . 123
D.32 elpa_invert_triangular_double . 124
D.33 elpa_invert_triangular_double_complex . 125
D.34 elpa_invert_triangular_float . 126
D.35 elpa_invert_triangular_float_complex . 127
D.36 elpa_load_settings . 128
D.37 elpa_print_settings . 129
D.38 elpa_print_times . 130
D.39 elpa_set . 131
D.40 elpa_setup . 134
D.41 elpa_setup_gpu . 135
D.42 elpa_skew_eigenvalues . 136
D.43 elpa_skew_eigenvectors . 138
D.44 elpa_solve_tridiagonal . 140
D.45 elpa_store_settings . 142
D.46 elpa_timer_start . 143
D.47 elpa_timer_stop . 144
D.48 elpa_uninit . 145

4

1 About ELPA

The computation of a subset or all eigenvalues and eigenvectors of a Hermitian matrix has high
relevance for various scientific disciplines. Typically, direct solvers are used for the calculation of
a significant part of the eigensystem. For large problems, solving for the eigensystem with the
existing solvers can become the computational bottleneck.

With the aim of developing and implementing an efficient eigenvalue solver for petaflop applica-
tions, ELPA (Eigenvalue soLvers for Petaflop Applications) was born, and today it has become a
modern library for direct, efficient, and scalable solution of eigenvalue problems involving dense,
Hermitian matrices.

The ELPA library was originally created by the ELPA consortium consisting of the following
organizations:

� Max Planck Computing and Data Facility (MPCDF), formerly known as Rechenzentrum
Garching der Max-Planck-Gesellschaft (RZG),

� Bergische Universität Wuppertal, Lehrstuhl für angewandte Informatik,

� Technische Universität München, Lehrstuhl für Informatik mit Schwerpunkt Wissenschaftliches
Rechnen,

� Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Abt. Theorie,

� Max-Plack-Institut für Mathematik in den Naturwissenschaften, Leipzig, Abt. Komplexe
Strukturen in Biologie und Kognition, and

� IBM Deutschland GmbH

We emphatically acknowledge code contributions from other developers.

ELPA uses the distributed matrix layout of ScaLAPACK, but replaces the solution steps with
subroutines of its own. Two variants of the solver are available: a one-step, and a two-step solver
hereinafter referred to as ELPA1 and ELPA2, respectively.

1.1 How to obtain ELPA

ELPA is an open source project. Its source code is freely available at https://gitlab.mpcdf.

mpg.de/elpa/elpa. It is distributed under the terms of the GNU Lesser General Public License
version 3 as published by the Free Software Foundation. A mirror of the above repository is also
available on GitHub, which is mainly for opening issues and merge requests as well as contribu-
tions from the developer’s community: https://github.com/marekandreas/elpa. Additionally,
ELPA can be obtained from the following sources:

� Official release tarball from the ELPA webpage

� As a packaged software for several Linux distributions (e.g., Debian, Fedora, OpenSUSE)

1.2 Terms of use

ELPA can be freely obtained, used, modified and redistributed under the terms of the GNU Lesser
General Public License version 3.

No other conditions have to be met. Nonetheless, we would be grateful if you consider citing the
following articles:

1. If you use ELPA in general:

5

https://gitlab.mpcdf.mpg.de/elpa/elpa
https://gitlab.mpcdf.mpg.de/elpa/elpa
https://github.com/marekandreas/elpa
https://elpa.mpcdf.mpg.de/software

� T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B.
Lang, H. Lederer, and P. R. Willems, ”Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations”, Parallel Computing 37, 783 (2011).
doi:10.1016/j.parco.2011.05.002.

� A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Heinecke, H. J.
Bungartz, and H. Lederer, ”The ELPA library: scalable parallel eigenvalue solutions for
electronic structure theory and computational science”, Journal of Physics Condensed
Matter, 26 (2014). doi:10.1088/0953-8984/26/21/213201

2. If you use the GPU version of ELPA:

� P. Kus, A. Marek, and H. Lederer, ”GPU Optimization of Large-Scale Eigenvalue
Solver”, In: F. Radu, K. Kumar, I. Berre, J. Nordbotten, I. Pop (eds) Numerical
Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture
Notes in Computational Science and Engineering, vol 126. Springer, Cham

� V. Yu, J. Moussa, P. Kus, A. Marek, P. Messmer, M. Yoon, H. Lederer, and V. Blum,
”GPU-Acceleration of the ELPA2 Distributed Eigensolver for Dense Symmetric and
Hermitian Eigenproblems”, Computer Physics Communications, 262, (2021)

3. If you use the new API and/or autotuning:

� P. Kus, A. Marek, S. S. Koecher, H. H. Kowalski, Ch. Carbogno, Ch. Scheurer, K.
Reuter, M. Scheffler, and H. Lederer, ”Optimizations of the Eigenvaluesolvers in the
ELPA Library”, Parallel Computing 85, 167 (2019). doi:10.1016/j.parco.2019.04.003.

4. If you use the new support for skew-symmetric matrices:

� P. Benner, C. Draxl, A. Marek, C. Penke, and C. Vorwerk, ”High Performance Solu-
tion of Skew-symmetric Eigenvalue Problems with Applications in Solving the Bethe-
Salpeter Eigenvalue Problem”, Parallel Computing 96, 102639 (2020).
doi:10.1016/j.parco.2020.102639.

1.3 Current release

The current ELPA release is 2024.05.001. It supports the API version 20241105. The oldest API
version supported by the current release is version 20170403. On more information on the API
versions, please have a look at Section 5.1

6

2 Quick start guide

This section gives a very short overview on how to use ELPA from a Fortran, C, or C++ appli-
cation. Before showing the respective examples, a few things should be noted:

– ELPA uses the same block-cyclic matrix distribution as ScaLAPACK, so if you already have
an application that uses ScaLAPCK eigensolvers, then converting it to use ELPA is just a
matter of adding a couple of lines of code.

– It is assumed that the ELPA library is already installed on your system, either by a system
administrator or by you via a system package or manually. For manual installation, please
have a look at the Section 3.

– It is assumed that you can link your application against the installed ELPA library. If you
need instructions on how to do that, please have a look at the Section 4.

– The examples provide a simple explanation on how to use ELPA within your application.
They neglect all options about tailoring ELPA to your specific needs and about how to
achieve the best performance possible. For quite a number of control options, we have
chosen reasonable but maybe not perfect defaults. If you want to tune the usage and the
performance of ELPA to your specific needs, please have a look at the Section 5.2 on key-
value pairs and at the Section 6.1 on autotuning.

– ELPA can be used with Nvidia, AMD, and Intel GPUs, see Section 5.6. Make sure to install
the appropriate GPU drivers on the machine.

2.1 Sequence of steps to use ELPA

To use the ELPA library in your code, follow these steps:

1. Include the header files (for C or C++ applications) or use the ELPA module (for Fortran
applications).

2. Define a handle for an ELPA object.

3. Initialize the ELPA library.

4. Allocate the ELPA object.

5. Set the mandatory parameters, namely as the matrix size, the number of eigenvectors to
be calculated, the block size of the BLACS block-cyclic distribution of the matrix, and
additional parameters for the MPI setup. Note that these parameters are fixed for the
lifetime of the ELPA object.

6. Set up the ELPA object via the setup method. This finalizes the setting of the mandatory
parameters and they cannot be changed anymore for the lifetime of the given ELPA object.

7. Set some runtime options.

� If GPUs should be used: Set one of the keywords nvidia-gpu, amd-gpu, or intel-gpu
via the ELPA set method and call the setup_gpu method to finalize setup of GPU.

� Set any other combination of runtime options (see Sec. 5.2) to control the ELPA
runtime behavior to your preference.

8. Call one of ELPA’s math functions. Examples for most commonly used routines are
eigenvectors, eigenvalues, generalized_eigenvectors, and generalized_eigenvalues

(see Sec. 5.3).

7

Hint

You can repeat steps 7-8 as many times as needed. You can change the runtime options
as well as the matrix elements and call the same or other ELPA math functions as many
times as you wish, as long as the mandatory parameters from above are kept constant
and still apply to your problem.

9. When finished: Deallocate the ELPA object and unintialize the ELPA library.

Below we provide minimalistic examples of how to call ELPA from a Fortran or C/C++ appli-
cation. These examples are, however, not self-contained. They will only compile and run if they
are embedded into an existing MPI application. Also the user has to create the matrix for which
the (generalized) eigenvalue problem should be solved, which in case of an MPI application, must
be distributed in a BLACS block-cyclic distribution, as it must be done for ScaLAPACK. For
standalone examples, see the test programs in the test directory of ELPA’s source code.

Please note that in the examples below, we first set the mandatory parameters (Sec. 5.2.1),
initialize ELPA object, and then set the runtime options (Sec. 5.2.2). For the runtime options we
set only GPU-related ones, but no other options for control and tuning of the ELPA library. See
the discussion at the beginning of Sec. 5.2 for the difference between the mandatory parameters
and the runtime options.

Also note that the ELPA API version is set to 20241105. The API version defines the set of
key-value pairs which can be used to control the ELPA library and also defines the procedures
provided by the library. For more details please have a look at Section 5.1.

2.2 Fortran example

! Step 1: use the ELPA module

use elpa

! Step 2: define a handle for the ELPA object

class(elpa_t), pointer :: elpaInstance

integer :: status

! We urge the user to always check the error codes of all ELPA functions!

! Step 3: initialize the ELPA library

status = elpa_init(20241105)

if (status /= ELPA_OK) then

print *, "ELPA API version not supported"

! Handle this error in your application

endif

! Step 4: allocate the ELPA object

elpaInstance => elpa_allocate(status)

! Check status code, e.g. with

if (status /= ELPA_OK) then

print *, "Could not allocate ELPA instance"

! Handle this error in your application

endif

! Step 5: set mandatory parameters describing the matrix

! and its MPI distribution

8

call elpaInstance%set("na", na, status)

if (status /= ELPA_OK) then

print *, "Could not set parameter na"

! Handle this error in your application

endif

call elpaInstance%set("nev", nev, status)

! Check status code ...

call elpaInstance%set("local_nrows", na_rows, status)

! Check status code ...

call elpaInstance%set("local_ncols", na_cols, status)

! Check status code ...

call elpaInstance%set("nblk", nblk, status)

! Check status code ...

call elpaInstance%set("mpi_comm_parent", MPI_COMM_WORLD, status)

! Check status code ...

call elpaInstance%set("process_row", my_prow, status)

! Check status code ...

call elpaInstance%set("process_col", my_pcol, status)

! Check status code ...

! Step 6: set up the elpa object, finalize setting of mandatory parameters

status = elpaInstance%setup()

if (status /= ELPA_OK) then

print *, "Could not setup the ELPA object"

! Handle this error in your application

endif

! Step 7: set runtime options, e.g. GPU settings

call elpaInstance%set("nvidia-gpu", 1, status) ! 1=on, 0=off

! Check status code ...

! If desired, set other tunable runtime options...

! Finalize the GPU setup. Needed only when using GPUs

status = elpaInstance%setup_gpu()

! Check status code ...

! Step 8: Solve the eigenvalue problem to obtain eigenvalues and eigenvectors

call elpaInstance%eigenvectors(a, ev, z, status)

! Check status code ...

! Step 9: cleanup ELPA

call elpa_deallocate(elpaInstance, status)

! Check status code ...

call elpa_uninit(status)

2.3 C/C++ example

// Step 1: include the ELPA header file

#include <elpa/elpa.h>

// Step 2: define a handle for the ELPA object

9

elpa_t elpaInstance;

int status;

// We urge the user to always check the error code of all ELPA functions!

// Step 3: initialize the ELPA library

status = elpa_init(20241105);

if (status != ELPA_OK) {

fprintf(stderr, "ELPA API version not supported");

// Handle this error in your application

}

// Step 4: allocate the ELPA object

elpaInstance = elpa_allocate(&status);

if (status != ELPA_OK) {

fprintf(stderr, "Could not allocate ELPA instance");

// Handle this error in your application

}

// Step 5: set mandatory parameters describing the matrix

// and its MPI distribution

elpa_set(elpaInstance, "na", na, &status);

// Check status code ...

elpa_set(elpaInstance, "nev", nev, &status);

// Check status code ...

elpa_set(elpaInstance, "local_nrows", na_rows, &status);

// Check status code ...

elpa_set(elpaInstance, "local_ncols", na_cols, &status);

// Check status code ...

elpa_set(elpaInstance, "nblk", nblk, &status);

// Check status code ...

elpa_set(elpaInstance, "mpi_comm_parent", MPI_COMM_WORLD, &status);

// Check status code ...

elpa_set(elpaInstance, "process_row", my_prow, &status);

// Check status code ...

elpa_set(elpaInstance, "process_col", my_pcol, &status);

// Check status code ...

// Step 6: set up the elpa object, finalize setting of mandatory parameters

status = elpa_setup(elpaInstance);

if (status != ELPA_OK) {

fprintf(stderr, "Could not set up the ELPA object");

// Handle this error in your application

}

// Step 7: set runtime options, e.g. GPU settings

elpa_set(elpaInstance, "nvidia-gpu", 1, &status); // 1=on, 0=off

// Check status code ...

// If desired, set other tunable runtime options...

// Finalize the GPU setup. Needed only when using GPUs

10

status = elpa_setup_gpu(elpaInstance);

// Check status code ...

// Step 8: solve the eigenvalue problem to obtain eigenvalues and eigenvectors

elpa_eigenvectors(elpaInstance, a, ev, z, &status);

// Check status code ...

// Step 9: cleanup ELPA

elpa_deallocate(elpaInstance, &status);

// Check status code ...

elpa_uninit(&status);

3 Installation guide

The build system of ELPA is the standard GNU Autotools (autoconf and automake installation
infrastructure) and consists of the following steps:

� ./configure

� make

� make check

� make install

Note that the configure script is included in the official ELPA release tarballs, which can be
obtained from the ELPA website. The configure script is most likely not included if you obtain
the ELPA sources by other means, in particular, if you use a Git clone of the ELPA repository
or you download a tarball from the Git repository. To generate the configure in such cases, you
must run the shell script ./autogen.sh.

We describe the ELPA dependencies in Section 3.1 and then elaborate on the individual instal-
lation steps in Sections 3.2-3.3. A minimal complete installation example is given in Section 3.4.
Finally, Section 3.5 gives some hints on the installation troubleshooting.

3.1 Dependencies

In order to build ELPA the following prerequisites and dependencies must be met:

1. Build tools:
GNU Autotools (autoconf, automake, and libtool) must be installed. A minimal version
of 2.71 for autoconf is needed in order to build ELPA with modern compilers (for example,
Intel Fortran compiler ifx).

2. Compilers:
ELPA is written in Fortran, C, and C++. The GPU versions are written in CUDA, HIP,
or SYCL. Thus you need several compilers to build ELPA.

(a) Fortran compiler: a recent Fortran compiler is needed. It must fully support the
Fortran 2003 and parts of the Fortran 2008 standard. To achieve the best performance
if possible the most recent compilers should be used. In case of the GNU compiler, at
least version 10 is required.

(b) C compiler: a recent C compiler is needed. The compiler must at least support the
C11 standard

11

(c) C++ compiler: a recent C compiler is needed. The compiler must at least support the
C++11. Note that to build with SYCL, the C++17 standard must be supported and
used.

Some compilers (e.g., clang) are not regularly tested in building ELPA. Every modern
compiler should, however, be able to compile the code.

In case of GPU build, additional compilers are needed depending on which version of the
GPU support should be build. We recommend using the most recent as possible GPU
software stack version.

� Nvidia-GPUs: The CUDA software stack must be installed and the nvcc compiler is
needed.

� AMD-GPUs: The ROCm software stack must be installed and the hip compiler is
needed.

� Intel-GPUs: The Intel oneAPI compilers icx and ifx must be installed.

3. External libraries: Some external libraries are needed at build and runtime:

� the Basic Linear Algebra Subroutines (BLAS)

� the Linear Algebra Package (LAPACK)

If ELPA is build for parallel distributed runs (which is the preferred case), in addition

� the Basic Linear Algebra Communication Subroutines (BLACS)

� ScaLAPACK

� Message Passing Interface (MPI)

are needed. Depending on whether you want to build ELPA in the Nvidia, AMD, or Intel
GPU version, some additional libraries might be needed:

� Nvidia-GPUs: cublas, cusolver and potentially NCCL

� AMD-GPU: rocblas and rocsolver

� Intel-GPUs: oneAPI MKL

ELPA can be configured to run sequentially as well as in parallel on shared- and/or distributed-
memory systems. The shared-memory parallel algorithm uses OpenMP threads, while the pro-
gramming model of the distributed algorithm is based on the message passing library (MPI).
In addition, the hybrid models MPI+OpenMP, MPI+GPU, and MPI+OpenMP+GPU are also
supported. For details on the installation process and the necessary configure options, please see
Sec. 3.2. Note that the sequential build option is only meant for installation on desktop or laptop
machines. Such a build of ELPA provides you the full API, such that you can develop applications
with ELPA, but obviously the performance of such a build will be very suboptimal.

3.2 Configuration

Running the configure script is the first step of the installation procedure. Note that if this
script is not present in the ELPA root folder, that is, if you obtained the ELPA sources from a
Git clone as in the example below, it can be easily created using autogen.sh, otherwise you can
skip the following step.

git clone https://gitlab.mpcdf.mpg.de/elpa/elpa.git

cd elpa

12

./autogen.sh

It is best practice to run the configuration in a subdirectory in order to keep the source directory
clean:

mkdir build

cd build

../configure [options]

3.2.1 Compiler and linker variables for configure

We observe that most problems with building ELPA arise from a misunderstanding how to pass
flags to the compilers, the linker, and how to specify the link line for the libraries which ELPA
needs as external dependencies. Thus, we want to mention here how one can typically control
these when calling a configure script.

Note these variables represent a very generic concept which applies to all builds with autoconf

tools, independent of the ELPA library.

FC The Fortran compiler to use.
Examples: FC="mpif90" (for GNU) or FC="mpiifx" (for Intel)
Note, that this variable must point to the Fortran compiler executable
you want to invoke. Thus in case of an MPI build, it must be the MPI
Fortran compiler. In case of a serial build, it must be the Fortran
compiler.

CC The C compiler to use.
Examples: CC="mpigcc" or CC="mpiicx"

CXX The C++ compiler to use.
Examples: CXX="mpicxx" or CXX="mpiicpx"

CPP The C preprocessed to use. Explicitly set this if you encounter errors
during the build.
Examples: CPP="gcc -E"

FCFLAGS All flags that must be passed to the Fortran compiler to control the
compiler’s behavior.
Example: FCFLAGS="-O2 -mavx"

Note that setting the Fortran optimization and vectorization flags via
FCFLAGS (as well C/C++ flags via CFLAGS/CXXFLAGS, see below) is of
utmost importance to obtain a good ELPA performance. We
elaborate on the optimization and vectorization flags in Sec. 3.2.2.

CFLAGS All flags that must be passed to the C compiler to control the
compiler’s behaviour.
Example: CFLAGS="-O2 -mavx"

CXXFLAGS All flags which must be passed to the C++ compiler to control the
compiler’s behaviour.
Example: CXXFLAGS="-O2 -mavx"

LDFLAGS All flags which must be passed to the linker to control the linker’s
behaviour.
Example: LDFLAGS="-Wl,-rpath,/absolute_path_to_a_library"

13

LIBS External libraries that you want to link with.
Example:
LIBS="-Wl,-L/absolute_path_to_a_library -llibrary"

In addition to these standard variables of autotools, the ELPA configure honors some special
variables:

SCALAPACK_FCFLAGS Additional Fortran compiler flags for ScaLAPACK usage.
Example:
SCALAPACK_FCFLAGS="-I$MKL_HOME/include/intel64/lp64"

Note, that this variable is a convenience feature.
You can also pass these flags to the Fortran compiler via the FCFLAGS

variable (see above).

SCALAPACK_LDFLAGS Additional linker flags for ScaLAPACK usage.
Example:

SCALAPACK_LDFLAGS="-L$MKL_HOME/lib/intel64 \

-lmkl_scalapack_lp64 -lmkl_intel_lp64 -lmkl_sequential \

-lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm \

-Wl,-rpath,$MKL_HOME/lib/intel64"

Note, that this variable is a convenience feature. You can also pass
these flags to the linker via the LDFLAGS and LIBS variables (see above).

PYTHON_CONFIG Path to python-config.

PYTHON_INCLUDE Include flags for Python.

NUMPY_INCLUDE Include flags for NumPy.

Below in Sec. 3.2.3, we list and categorize the important options to configure ELPA. A full list of
all available options can be obtained with ./configure --help.

The configure options control which features are available at runtime. Whether a feature is
actually used for the solution of the eigenproblem, depends on the ELPA settings chosen in your
application. For example, if a specific kernel is enabled by a configuration option and it is not set
as default, it must be activated with the solver setting (cf. Sec. 5.2.2) in order to be used for the
computation.

3.2.2 Compiler flags for vectorization and optimization

In this section we give some hints on how to set the compiler vectorization and optimization flags,
which are of the utmost importance for the ELPA performance.

Since (combinations of) these flags depend on the used compiler, its version, and the target hard-
ware architecture, it is beyond the scope of this manual to give their comprehensive description
and we refer further to the compiler/your HPC center documentation. In this section we still give
some useful guides for these flags.

Vectorization The vectorization capabilities of the CPU should be fully exploited.
Consult the documentation of your compiler to find the appropriate
FCFLAGS/CFLAGS/CXXFLAGS for your system. It is important to enable
the appropriate ELPA kernels (cf. Sec. 3.2.3) together with the correct
compiler flags.
For GNU and Intel compilers, consider the -march and -x flags,
respectively.

14

Examples: FCFLAGS="-march=skylake-avx512 ..." (GNU)
FCFLAGS="-xCORE-AVX512 ..." (Intel)

Optimization Compiler optimization should be switched on to enhance performance.
You are adviced to select the highest optimization level that yields
correct results. If the optimization is too aggressive, the calculated
eigenvalues and eigenvectors are inaccurate. We do not generally
recommend an optimization level, because this depends on the compiler
and its version. Be aware that compiler vendors occasionally change
the optimization strategies included in a certain level. Please always
verify the correctness of your configuration with make check (see
Sec. 3.3). Note that specifying the -O flag alone will typically not
enable vectorization.
Examples: For the GNU compilers (up to version 12) and the classic
Intel compilers (icc and ifort up to Intel oneAPI version 2021.6), we
recommend -O2 or -O3. This is not valid for the new Intel icx and ifx

compilers, which we have not yet tested thoroughly.

Threading If ELPA should be run in hybrid parallelization with MPI and
OpenMP, we recommend to link against the threaded math library.
Example: -lmkl_intel_thread instead of -lmkl_sequential for
Intel MKL

Floating-
point
calculations

To obtain accurate computational results, you should consider setting
the flags for controlling the floating-point handling.
Example: For the Intel compiler, consider changing the value of
-fp-model. Setting -fp-model=precise will enable the most accurate
calculations, however, with a potential performance penalty.

Some further useful hints can be found in the ELPA configuration examples, Sec. 3.2.4.

3.2.3 Configure options

In addition to the variables described in Sec. 3.2.1 the build of ELPA, can be controlled by adding
options to the configure command line. Here, one has to distinguish between

� standard configure options, offered by configure and

� ELPA specific configure options.

Listing here all the standard configure options is beyond the scope of this documentation. Most
of these options are also only recommended for very experienced users. Concerning the ELPA
specific configure options, in this section we will focus here on most common ones, while other
“expert” configure options are listed and explained in the Appendix A.

In any case, all configure options can be listed via the ./configure --help command.

The general syntax for optional flags is --enable-feature or --enable-feature=yes for enabling
the “feature” and --disable-feature or --enable-feature=no for disabling it. For some of
the flags, the syntax is --with-feature=yes to enable and --with-feature=no to disable or
--with-feature=value to specify a special flavor of a feature.

15

Hint

It is strongly recommended to always include the option
--enable-option-checking=fatal, which aborts the configuration if any other option is
unknown or invalid.

1. Controlling the installation directories

--prefix Installation directory for architecture-independent files.
Use this option if you want to install without root
privileges.
Example: --prefix="$HOME/soft/elpa"

Default: /usr/local

--exec-prefix Installation directory for architecture-dependent files.
Default: same as --prefix

Further options are available for controlling the
individual subdirectories. See ./configure --help for a
detailed list.

2. Controlling the API provided by ELPA

--disable-skew-symmetric-support

Do not support skew-symmetric matrices. Removes
skew_eigenvectors, skew_eigenvalues, etc. from the
API.
Default: enabled

--enable-python Build and install the Python wrapper.
Default: disabled

3. Controlling MPI

--with-mpi=[yes|no] Enable MPI parallelization. Note that the MPI
parallelization should only be switched off for very good
reasons and that ELPA execution is then limitied to one
compute node!
Default: yes

--disable-mpi-module Replace the Fortran MPI module use mpi with
include "mpif.h". Use this option only if your MPI
library does not provide a Fortran module. Typically
error messages are “no module mpi” or “cannot open
module mpi”.
Default: enabled (= use mpi module)

--disable-detect-mpi-launcher

Disable automatic detection of the MPI launcher.
Default: enabled (= detect launcher)

--enable-mpi-launcher=[mpiexec|mpiexec.hydra|mpirun|srun]

Use the specified MPI launcher for running the test suite
(make check) on HPC systems that do not allow
interactive MPI runs. Must be combined with
--disable-detect-mpi-launcher.

16

Example: With --disable-detect-mpi-launcher

--enable-mpi-launcher=srun you can call make check

from a SLURM script on a system that supports srun.
Default: detect automatically (see
--disable-detect-mpi-launcher)

4. Controlling OpenMP

--enable-openmp Compile with OpenMP threading parallelism. Note that
independent of whether ELPA has been built with
threading support, you can always use multi-threading
for your math library if ELPA is properly linked against
its threaded version. See also Sec. 5.4.2.
Default: disabled

5. Availability of ELPA2 compute kernels

Note that at the end of the configuration, a list of all
enabled kernels will be displayed.

--disable-generic-kernels Do not build generic kernels compatible with all
platforms. Note that the performance of these kernels
will be inferior to other vectorized kernels.
Default: enabled

--disable-sse-kernels Do not build SSE kernels.
Default: enabled

--disable-sse-assembly-kernels

Do not build SSE kernels written in assembly.
Default: enabled

--disable-avx-kernels Do not build AVX kernels for Intel Sandy Bridge and
later.
Default: enabled

--disable-avx2-kernels Do not build AVX2 kernels for Intel Haswell and later.
Default: enabled

--disable-avx512-kernels Do not build AVX-512 kernels for Intel Knights Landing
and later.
Default: enabled

--enable-vsx-kernels Build VSX kernels for IBM POWER7 and later.
Default: disabled

--enable-sparc64-kernels Build kernels for processors supporting SPARC64
(SPARC V9).
Default: disabled

--enable-bgp-kernels Build kernels for IBM Blue Gene/P.
Default: disabled

--enable-bgq-kernels Build kernels for IBM Blue Gene/Q.
Default: disabled

--enable-neon-arch64-kernels

Build kernels for ARM using Neon (Advanced SIMD)

17

instructions.
Default: disabled

--enable-sve128-kernels Build 128-bit SVE kernels for ARM processors.
Default: disabled

--enable-sve256-kernels Build 256-bit SVE kernels for ARM processors.
Default: disabled

--enable-sve512-kernels Build 512-bit SVE kernels for ARM processors.
Default: disabled

--with-fixed-real-kernel=KERNEL

Build only a single specific real kernel and make it
default. Avialable kernels are: generic,
generic_simple, generic_simple_block4,
generic_simple_block6, sparc64_block2,
sparc64_block4, sparc64_block6,
neon_arch64_block2, neon_arch64_block4,
neon_arch64_block6, vsx_block2, vsx_block4,
vsx_block6, sse_block2, sse_block4, sse_block6,
sse_assembly, sve128_block2, sve128_block4,
sve128_block6, avx_block2, avx_block4, avx_block6,
avx2_block2, avx2_block4, avx2_block6,
sve256_block2, sve256_block4, sve256_block6,
avx512_block2, avx512_block4, avx512_block6,
sve512_block2, sve512_block4, sve512_block6, bgp,
bgq, nvidia_gpu, amd_gpu, intel_gpu_sycl,
nvidia_sm80_gpu.

--with-fixed-complex-kernel=KERNEL

Build only a single specific complex kernel and make it
default. Avialable kernels are: generic,
generic_simple, neon_arch64_block1,
neon_arch64_block2, sse_block1, sse_block2,
sse_assembly, sve128_block1, sve128_block2,
avx_block1, avx_block2, avx2_block1, avx2_block2,
sve256_block1, sve256_block2, avx512_block1,
avx512_block2, sve512_block1, sve512_block2, bgp,
bgq, nvidia_gpu, amd_gpu, intel_gpu_sycl,
nvidia_sm80_gpu.

--with-default-real-kernel=KERNEL

Set a specific real kernel as default. See
--with-fixed-real-kernel for a complete list of
avaliable kernels.
Default: real_avx512_block2

--with-default-complex-kernel=KERNEL

Set a specific complex kernel as default. See
--with-fixed-complex-kernel for a complete list of
avaliable kernels.
Default: complex_avx512_block1

--enable-heterogenous-cluster-support

18

Experimental! Select a kernel supported by all CPUs
in a heterogenous cluster. Currently, only available for
Intel CPUs.
Default: disabled

6. Controlling the AMD GPU version

--enable-amd-gpu-kernels Build kernels for AMD GPUs.
Default: disabled

If this option is enabled, then the details of the AMD GPU version can be further
controlled with

--enable-gpu-streams=[amd|no]

Use Cuda or HIP streams in Nvidia or AMD GPU
versions, respectively.
Default: amd (enabled)

--with-AMD-gpu-support-only=[yes|no]

Experimental! Build real and complex AMD GPU
kernels only. If enabled, no other kernels will be available
at runtime.
Default: no

--with-rocsolver=[yes|no] Use AMD rocSOLVER library.
Default: yes

--enable-marshalling-hipblas-library

Use indirection layer hipBLAS instead of rocBLAS.
Default: disabled

--enable-hipcub Use reductions from hipCUB in AMD GPU kernels.
Default: disabled

--enable-gpu-ccl=[rccl|no]

Use NCCL or RCCL communication libraries in Nvidia
or AMD GPU versions, respectively.
Default: no (disabled)

7. Controlling the Intel GPU version

--enable-intel-gpu-sycl-kernels

Build kernels for Intel GPUs using SYCL. Requires
--enable-intel-gpu-backend=sycl.
Default: disabled

--enable-intel-gpu-backend=[sycl|openmp]

Build GPU code for Intel GPUs and select either SYCL
or OpenMP as the backend.
Default: disabled (= no Intel GPU kernels)

If ELPA is configured to use SYCL then one can further control the build with

--with-INTEL-gpu-support-only=[yes|no]

Experimental! Build real and complex Intel GPU
kernels only. If enabled, no other kernels will be available
at runtime.
Default: no

19

8. Controlling the Nvidia GPU version
In the past, when only an Nvidia GPU version was available, Nvidia GPU builds were
triggered by

--enable-gpu Deprecated. Build kernels for GPUs. Please use
explicit options for the various vendors instead.
Default: disabled

Warning

Configure argument --enable-gpu is outdated and will be removed in one of the
next releases. Do not use it anymore!

Instead, nowadays, the Nvidia GPU build must be enabled with one of the two following
options:

--enable-nvidia-gpu-kernels

Build kernels for Nvidia GPUs. Use
--with-NVIDIA-GPU-compute-capability to set the
compute capability for best performance.
Default: disabled

--enable-nvidia-sm80-gpu-kernels

Build kernels for Nvidia GPUs supporting the compute
capability 8.0, for example, Nvidia A100.
Default: disabled

If the Nvidia GPU build is enabled, then it can be further controlled with the arguments:

--with-cuda-path=PATH Path where CUDA is installed.
Default: detect automatically

--enable-cuda-aware-mpi Experimental! Use CUDA-aware MPI features to
enhance performance. Requires an MPI library that
integrates with CUDA, for example, OpenMPI.
Default: disabled

Warning

The flag --enable-cuda-aware-mpi is still experimental and should not be used in
production.

--enable-gpu-streams=[nvidia|no]

Use CUDA or HIP streams in Nvidia or AMD GPU
versions, respectively.
Default: nvidia (enabled)

--enable-gpu-ccl=[nccl|no]

Use NCCL or RCCL communication libraries for Nvidia
or AMD GPU versions, respectively.
Default: no (disabled)

--with-nccl-path=PATH Path where NCCL is installed.
Default: detect automatically

--with-NVIDIA-gpu-support-only=[yes|no]

Build real and complex Nvidia GPU kernels only. If

20

enabled, no other kernels will be available at runtime.
Default: no

--with-NVIDIA-sm_80-gpu-support-only=[yes|no]

Build real and complex Nvidia GPU kernels for compute
capability 8.0 only. If enabled, no other kernels will be
available at runtime.
Default: no

--with-NVIDIA-GPU-compute-capability=VALUE

Use compute capability VALUE for Nvidia GPU kernels.
Default: sm_35 (= 3.5)

--enable-NVIDIA-gpu-memory-debug

Output memory information of Nvidia GPU devices. The
script at utils/memory/check_memory.py can be used
to process the output.
Default: disabled

--with-cusolver=[yes|no] Use Nvidia cuSolver library.
Default: yes

--enable-nvidia-cub Use reductions from CUB in real Nvidia GPU kernel.
Default: disabled

--enable-nvtx Build and install NVTX wrappers for profiling the GPU
code.
Default: disabled

9. Controlling performance-related options

--disable-autotuning Disable autotuning. See Sec. 6.1 for a detailed
explanation.
Default: enabled

--with-papi=[yes|no] Use PAPI to measure and print FLOP counts. Only
available if --enable-timings is set.
Default: no

--with-likwid=[yes|no|PATH]

Use LIKWID to measure the performance of some solver
parts. If set to yes and the library can not be found, you
can set the PATH explicitly.
Default: no

--disable-assumed-size Do not use assumed-size Fortran arrays.
Default: enabled

10. Controlling output

--disable-timings Disable timings measurement with the API functions
timer_start, timer_stop, get_time, and the output of
print_times. If disabled, some ELPA features like
autotuning will not work.
Default: enabled

--enable-redirect For test programs. Redirect stdout and stderr of each
MPI task to a separate file in the subdirectory

21

mpi_stdout.
Default: disabled

11. Controlling precision

--disable-single-precisionDisable single precision and build for double precision
only.
Default: enabled

--enable-64bit-integer-math-support

Support 64-bit integers in the math libraries BLAS,
LAPACK, and ScaLAPACK. Combine this option only
with the appropriate link line to the math library, e.g.,
by choosing the suffix _ilp64 for Intel MKL.
Default: disabled

--enable-64bit-integer-mpi-support

Support 64-bit integers in the MPI library. Make sure to
link against the appropriate MPI library.
Default: disabled

12. Controlling Fortran features

--disable-Fortran2008-features

Do not use Fortran 2008 features. Use this option if your
compiler does not support the Fortran 2008 standard.
Default: enabled

--enable-ifx-compiler Modify the code to build with older ifx compiler
versions. This flag is not needed anymore in recent Intel
oneAPI versions.
Default: disabled

13. Controlling which test programs will be build

--disable-c-tests Build C tests.
Default: enabled

--disable-cpp-tests Build C++ tests.
Default: enabled

--enable-scalapack-tests Build ScaLAPACK test cases for performance
comparison.
Default: disabled

--enable-python-tests Enable Python tests. Only available if --enable-python
is set.
Default: disabled

3.2.4 configure examples

The following examples should provide an overview of how to configure ELPA. They are, however,
not meant to be copied and pasted for a production-ready build. They have to be adapted to the
respective system and must be optimized for best performance.

� OpenMP, GNU compilers

22

To configure a threaded build without MPI support on your personal linux workstation, you can
try using this command (“\” symbol is used for a line break and can be omitted):

../configure --prefix=$HOME/soft/elpa CC=gcc CXX=g++ FC=gfortran \

CFLAGS="-O3 -march=native" FCFLAGS="-O3 -march=native" \

--enable-option-checking=fatal --disable-avx512 --with-mpi=no --enable-openmp

We assume here that you have the current GNU compiler suite and all required libraries installed
in the default location. These requirements are often met on the well-known linux distributions.
If the math libraries can not be found automatically, you need to explicitly set the variables
SCALAPACK_FCFLAGS and SCALAPACK_LDFLAGS (see Sec. 3.2.1) and other examples below.

� MPI+OpenMP, GNU compilers

Assuming the same system as in the previous example and after having installed an MPI library
(for example, OpenMPI) in the default location, you can build ELPA with additional MPI support
like this:

../configure --prefix=$HOME/soft/elpa CC=mpicc CXX=mpicxx FC=mpifort \

CFLAGS="-O3 -march=native" FCFLAGS="-O3 -march=native" \

--enable-option-checking=fatal --disable-avx512 --with-mpi=yes \

--enable-openmp

� MPI, Intel toolchain

Here we present an example of a configure line for a system with an Intel CPU that does not
support AVX-512 instructions. We are using the Intel classic compilers in combination with Intel
MKL and Intel MPI (“Intel toolchain”):

../configure --prefix=$HOME/soft/elpa CC=mpiicc CXX=mpiicpc FC=mpiifort \

CFLAGS="-O3 -xHost" FCFLAGS="-O3 -xHost" \

SCALAPACK_FCFLAGS="-I${MKLROOT}/include/intel64/lp64" \

SCALAPACK_LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_scalapack_lp64 \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lmkl_blacs_intelmpi_lp64 \

-lpthread -lm -Wl,-rpath,${MKLROOT}/lib/intel64" \

--enable-option-checking=fatal --with-mpi=yes --disable-avx512

Note that -lmkl_intel_thread should be used instead of -lmkl_sequential for the threaded
build. -lmkl_blacs_openmpi_lp64 should be used instead of -lmkl_blacs_intelmpi_lp64 if
you use Open MPI instead of Intel MPI. For the further details specific to Intel MKL we refer to
Intel MKL Link Line Advisor 1.

At the time of writing, all necessary Intel tools including C, C++, and Fortran compilers, Intel
MKL, and Intel MPI are available free of charge as a part of Intel oneAPI HPC Toolkit.

� Nvidia GPU + MPI, Intel toolchain

If you want to use ELPA on a Nvidia GPU-accelerated system with Intel CPU supporting AVX-
512 (Intel Knights Landing and later) and using Intel toolchain:

../configure --prefix=$HOME/soft/elpa CC=mpiicc FC=mpiifort CXX=mpiicpc \

CFLAGS="-O3 -xCORE-AVX512 -I$MKLROOT/include/intel64/lp64 \

-I$CUDA_HOME/include" \

FCFLAGS="-O3 -xCORE-AVX512 -I$MKLROOT/include/intel64/lp64 \

1https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.

html

23

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

-I$CUDA_HOME/include" \

LDFLAGS="-L$MKLROOT/lib/intel64 -lmkl_scalapack_lp64 -lmkl_intel_lp64 \

-lmkl_sequential -lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm \

-Wl,-rpath,$MKLROOT/lib/intel64" \

--enable-option-checking=fatal --with-mpi=yes --enable-nvidia-gpu-kernels \

--with-NVIDIA-GPU-compute-capability=sm_80 --with-cuda-path=$CUDA_HOME \

--with-cusolver=yes --with-gpu-streams=nvidia

Here $CUDA_HOME is the path to the CUDA installation directory.

� Nvidia GPU + NCCL + OpenMPI, GNU compilers, Intel MKL

../configure --prefix=$HOME/soft/elpa CC=mpicc FC=mpif90 CXX=mpicxx \

CFLAGS="-O3 -march=skylake-avx512 -I$MKL_HOME/include/intel64/lp64 \

-I$CUDA_HOME/include" \

FCFLAGS="-O3 -march=skylake-avx512 -I$MKL_HOME/include/intel64/lp64 \

-I$CUDA_HOME/include" \

LDFLAGS="-L$MKL_HOME/lib/intel64 -lmkl_scalapack_lp64 -lmkl_gf_lp64 \

-lmkl_sequential -lmkl_core -lmkl_blacs_openmpi_lp64 -lpthread \

-Wl,-rpath,$MKL_HOME/lib/intel64" \

--enable-option-checking=fatal --with-mpi=yes --enable-assumed-size \

--enable-band-to-full-blocking --enable-nvidia-gpu \

--with-NVIDIA-GPU-compute-capability=sm_80 \

--with-cuda-path=$CUDA_HOME --enable-gpu-ccl=nccl --with-nccl-path=$NCCL_HOME

� Intel GPU + MPI, Intel toolchain

If you want to use ELPA on a Intel GPU-accelerated system on top of the Intel oneAPI toolchain:

../configure --prefix=$HOME/soft/elpa FC="mpiifort -fc=ifx" CC=mpiicx \

CXX=mpiicpx CFLAGS="-O3 -xCORE-AVX512" CXXFLAGS="-O3 -xCORE-AVX512 -fsycl \

-I$ONEAPI_ROOT/compiler/latest/linux/include/sycl \

-I$ONEAPI_ROOT/mkl/latest/include" \

FCFLAGS="-O3 -xCORE-AVX512 -fsycl \

-I$ONEAPI_ROOT/compiler/latest/linux/include/sycl" \

LIBS="-L$ONEAPI_ROOT/compiler/latest/linux/lib \

-L$ONEAPI_ROOT/compiler/latest/linux/compiler/lib/intel64_lin -lsycl \

-Wl,-rpath,$ONEAPI_ROOT/compiler/latest/linux/lib" \

SCALAPACK_FCFLAGS="-I$ONEAPI_ROOT/mkl/latest/include/intel64/lp64 -fsycl" \

SCALAPACK_LDFLAGS="-fsycl -L$ONEAPI_ROOT/mkl/latest/lib/intel64 -lmkl_sycl \

-lmkl_scalapack_lp64 -lmkl_intel_lp64 -lmkl_sequential -lmkl_core \

-lmkl_blacs_intelmpi_lp64 -lsycl -lOpenCL -lpthread -lm -ldl -lirng \

-lstdc++ -Wl,-rpath,$ONEAPI_ROOT/mkl/latest/lib/intel64" \

--enable-option-checking=fatal --enable-ifx-compiler --with-mpi=yes \

--enable-sse-kernels --enable-sse-assembly-kernels --enable-avx-kernels \

--enable-avx2-kernels --enable-avx512 --enable-intel-gpu-sycl-kernels \

--enable-intel-gpu-backend=sycl --enable-single-precision

� AMD GPU + MPI, Cray toolchain

../configure CPP="gcc -E" CC=cc CXX=hipcc FC=ftn CFLAGS="-O3 -g" \

CXXFLAGS="-O3 -g -std=c++17 -DROCBLAS_V3 -D__HIP_PLATFORM_AMD__ \

--offload-arch=gfx90a" FCFLAGS="-O3 -g" LIBS="-lamdhip64 -fPIC" \

--enable-option-checking=fatal --with-mpi=yes --disable-sse \

24

--disable-sse-assembly --disable-avx --disable-avx2 --disable-avx512 \

--enable-amd-gpu --enable-single-precision --enable-gpu-streams=amd \

--enable-hipcub --disable-cpp-tests --with-rocsolver

� AMD GPU + RCCL, Cray toolchain

../configure CPP="gcc -E" CC=cc CXX=hipcc FC=ftn CFLAGS="-g -O3 -std=c++17" \

FCFLAGS="-g -O3" CXXFLAGS="-DROCBLAS_V3 -D__HIP_PLATFORM_AMD__ \

--offload-arch=gfx90a -g -O3 -std=c++17" LIBS="-lamdhip64 -fPIC" \

--enable-option-checking=fatal --with-mpi=yes --disable-sse \

--disable-sse-assembly --disable-avx --disable-avx2 --disable-avx512 \

--enable-amd-gpu --enable-single-precision --enable-gpu-streams=amd \

--enable-hipcub --disable-cpp-tests --with-rocsolver --enable-gpu-ccl=rccl \

--with-rocsolver

3.3 Building

After the successful configuration with the appropriate options for your system, ELPA can be
built with make. Depending on your machine, you can speed up this process with the command
line argument -j followed by the number of cores to use for building.

When ELPA has been compiled and linked successfully, we recommend running the included test
suite with make check. It supports the following options:

CHECK_LEVEL If set to extended, run additional time-consuming tests. If set to
autotune, run additional tests for verifying the autotuning feature of
ELPA.
Default: Run the basic test suite.

TASKS Number of MPI tasks to use for testing.
Default: 2

TEST_FLAGS Tuple of matrix size, number of eigenvalues, and block size.
Example: TEST_FLAGS="150 100 32" for a matrix of 150× 150
requesting 100 eigenvalues using a block size of 32. Smaller matrices
speed up the ‘make check’ test suite.
Default: "5000 150 16"

3.4 Complete installation example

Here we present an example of a complete installation of ELPA for a linux workstation with Intel
CPU, using the Intel toolchain.

git clone https://gitlab.mpcdf.mpg.de/elpa/elpa.git

cd elpa

./autogen.sh

mkdir build

cd build

../configure --prefix=$HOME/soft/elpa CC=mpiicc CXX=mpiicpc FC=mpiifort \

CFLAGS="-O3 -xHost" FCFLAGS="-O3 -xHost" \

SCALAPACK_FCFLAGS="-I${MKLROOT}/include/intel64/lp64" \

SCALAPACK_LDFLAGS="-L${MKLROOT}/lib/intel64 -lmkl_scalapack_lp64 \

25

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lmkl_blacs_intelmpi_lp64 \

-lpthread -lm -Wl,-rpath,${MKLROOT}/lib/intel64" \

--enable-option-checking=fatal --with-mpi=yes --disable-avx512

make -j 8

Important note for the users

You can accelerate the test suite by overwriting the value of TEST_FLAGS as shown here.

make check -j 8 TEST_FLAGS="150 100 32"

make install

If the installation was successful, ELPA is now installed in the directory $HOME/soft/elpa and
you’ll get a message how to link your application against ELPA. More details on compiling and
linking against ELPA can be found in Sec. 4.

If the installation was not successful, we give some (although incomprehensive) hints on trou-
bleshooting in the following section.

3.5 Troubleshooting

Errors can occur during one of these steps:

� configure

� make

� make check

If the error occured during make or make check, make sure to clear the build directory before
re-running make or make check before reconfiguring ELPA with new flags.

3.5.1 Common configure problems

Most typical errors at the configure stage are related to missing dependencies. Please make
sure that you have installed all required dependencies (see Sec. 3.1) and carefully read the error
message, since it can give a hint which dependency is missing. For the extended error message,
check the config.log file in the build directory.

Problem. If you use the GNU compilers and encounter the error “initializer element is

not constant” or “not specified in enclosing ’parallel’” during build, this is most likely
caused by an outdated gcc compiler version.

Solution. Make sure that you use gcc of at least version 10.

3.5.2 Common make problems

Problem. There is an error message related to MPI, e.g. "no module mpi", "cannot open

module mpi", "Could not resolve generic procedure mpi_send/mpi_recv/mpi_allreduce".

Solution. Try to reconfigure ELPA with the option --disable-mpi-module. This flag does not
switch off MPI, it just affects internal working of ELPA, so that it does not use the Fortran MPI
module, but rather get interfaces by include mpif.h.

26

3.5.3 Common make check problems

Extended error messages can be found in the test-suite.log file in the build directory. Note
that the Fortran tests, e.g. validate_complex_double_eigenvectors_... are usually more
expressive in describing the error than the corresponding C/C++ tests, e.g.
validate_c_version_complex_double_eigenvectors_.../
validate_cpp_version_complex_double_eigenvectors_...

Problem. Some HPC centers do not allow running MPI programs interactively. It therefore
could happen that make check does not run at all on the machine on which you are installing
ELPA.

Solution. If the HPC center supports SLURM with srun, you can reconfigure ELPA with
the following options: --disable-detect-mpi-launcher --enable-mpi-launcher=srun (see
Sec. 3.2.3) and then call make check from a SLURM script. Alternatively, consult the docu-
mentation of your HPC center on how to interactively run MPI programs.

Problem. "Program Exception - illegal instruction" error and/or errors occurring in
compute_hh_trafo.

Solution. Try to reconfigure ELPA with disabled vectorization options, e.g. --disable-avx512.

Problem. make check is too slow.

Solution. Use the -j option for utilizing more cores and a smaller test matrix size to speed up the
tests, e.g. make check -j 8 TEST_FLAGS="150 100 32" for using 8 cores and the matrix of size
150× 150. You can also switch off certain ELPA APIs and tests by reconfiguring ELPA with the
flags "--disable-skew-symmetric-support --disable-c-tests --disable-cpp-tests".

27

4 Compiling and linking against ELPA

To link your application against your local installation of the ELPA library, you need to point
the compiler to the correct include files (header file for C/C++ or module file for Fortran) and
instruct the linker to find the library file.

4.1 Linking with pkg-config

The best option is to use the package config tool. Make sure to install the program pkg-config

on your system. The following steps explain how to fetch the correct flags. Note that you usually
forward them to the compiler and linker as FCFLAGS, CFLAGS, CXXFLAGS, and LDFLAGS.

1. Extend the PKG_CONFIG_PATH environment variable to point to the subfolder lib/pkgconfig
(or lib64/pkgconfig on some systems) of your ELPA installation. Depending on your
system and shell, this might look similar to this:

export

PKG_CONFIG_PATH=/absolute_path_to_elpa/lib/pkgconfig:$PKG_CONFIG_PATH

where /absolute_path_to_elpa corresponds to the absolute path of the ELPA installation
set by --prefix (e.g. $HOME/soft/elpa from Sec. 3.2.4)

2. To fetch the correct flags for Fortran (FCFLAGS), run the command

pkg-config --variable=fcflags elpa

or

pkg-config --variable=fcflags elpa_openmp

depending on your build.

3. To fetch the correct flags for C/C++ (CFLAGS or CXXFLAGS), run the command

pkg-config --cflags elpa

or

pkg-config --cflags elpa_openmp

depending on your build.

4. To fetch the correct linker flags (LDFLAGS), run the command

pkg-config --libs elpa

or

pkg-config --libs elpa_openmp

depending on your build.

Adding these flags to the build procedure of your application will link it against ELPA. It should be
mentioned that these flags will include all necessary options for libraries that ELPA has been linked
against during its build, especially the GPU, MPI, BLACS, BLAS, LAPACK, and ScaLAPACK
libraries. If your application relies also on one or more of these libraries, the linkline is “shipped”
with the ELPA linkline and explicit linking might not be necessary.

28

4.2 Linking without pkg-config

If you do not want to use the pkg-config tool, although we strongly recommend doing that,
you can also set the flags manually. For most compilers, the C-include flag (added to CFLAGS or
CXXFLAGS) should be

-I/absolute_path_to_elpa/include/build_specific_subdirectory

and the Fortran module flag (added to FCFLAGS) should be

-I/absolute_path_to_elpa/include/build_specific_subdirectory/modules

where, as before, /absolute_path_to_elpa corresponds to the absolute path of the ELPA in-
stallation set by --prefix (e.g. $HOME/soft/elpa from Sec. 3.2.4). The highlighted subdirectory
build_specific_subdirectory is something like elpa-2024.03.001.

The linker flags (LDFLAGS) are typically

-L/absolute_path_to_elpa/lib -lelpa

or

-L/absolute_path_to_elpa/lib -lelpa_openmp

depending on your build. Make sure that you adapt the paths and flags accordingly. Note that
unlike in the case of pkg-config --libs, here the LDFLAGS do not automatically contain links
to external libraries (MPI, BLACS, etc.).

It might happen at runtime that the ELPA library cannot be found. In this case either set the
LD_LIBRARY_PATH pointing to the ELPA library directory with (depending on your system and
shell)

export LD_LIBRARY_PATH=/absolute_path_to_elpa/lib:$LD_LIBRARY_PATH

or add an additional linker flag

-Wl,-rpath,/absolute_path_to_elpa/lib

to the LDFLAGS when building your application. In the latter case, setting the LD_LIBRARY_PATH

is not necessary anymore.

29

5 Calling ELPA

In this section, the ELPA Fortran API is explained first followed by illustrations of the steps
involved to setup ELPA and use it from within an application code. For guidlines on using the
Python API, please see Sec. 5.7.

5.1 API version

ELPA release Release API version Minimal supported API vesion
2024.05.001 20241105 20170403
2024.03.001 20241103 20170403
2023.11.001 20231705 20170403
2023.05.001 20231705 20170403
2022.11.001 20221109 20170403
2022.05.001 20211125 20170403
2021.11.001 20211125 20170403
2020.11.001 20190501 20170403
2020.05.001 20190501 20170403
2020.05.001 20190501 20170403
2019.11.001 20190501 20170403
2019.05.001 20190501 20170403
2018.11.001 20181113 20170403
2018.05.001 20180525 20170403
2017.11.001 20171201 20170403
2017.05.001 20170403 20170403

Table 1: ELPA release versions and the corresponding API versions

Each ELPA release defines two version numbers for the API. First, the release API version, for the
latest release also often referred to as current API version, and the minimal API version supported
by this release. Obviously, the versioning scheme of ELPA API versions is monotonically increasing
such that a natural ordering (lower API version means older) can be infered. An overview over the
ELPA versions published and with the repective release API version and minimal API version is
shown in the Table 1.

The minimal API version tells you whether there have been breaking changes in the API, i.e.
whether downward compatibility only to a certain ELPA release (identified by the release API
version of this old release being the same as the minimal API version of the newer release) is
guranteed. Up to now this has been never happening for the ELPA library, but might potentially
occur in the future.

A change in the release API version, implies that there have either been changes to the API
or whether new key-value pairs (see Sec. 5.2) have been introduced. Typically, the release API
version is increased if new procedures have been added with a release. If the minimal API version
did not change from one release to the other, it also implies that nothing has been removed from
the API. As mentioned, the API version of a new release will also be changed if new key-value
pairs have been introduced, to allow for new funtionality or performance tuning. It is important
to note that adding new key-value pairs does not introduce breaking changes, since an application
making use of these new key-value pairs can be still linked against and run with older ELPA
versions not supporting these keywords. The only change will be that the older ELPA library
will ignore the new keywords but still run and produce correct results, albeit with maybe lower
performance than a newer ELPA release. Even removing key-value pairs would only introduce

30

a “breaking change” insofar that the key-value combination would be ignored and performance
might drop, but again, ELPA would continue to work and produce the correct results.

Nevertheless, it is recommended to upgrade your application to the latest versions of ELPA
availabe and to initialize with the latest release API version since only this does gurantee you to
obtain the best possible performance from the ELPA library.

Note that before the release of ELPA 2017.05.001 another API has been used and breaking API
changes occured with every release. With the introduction of the API of release 2017.05.001 the
API become much more expressive and stable.

For a given ELPA installation you can find out the supported API versions by either referring to
the Table 1, or by inspecting the file elpa_version.h in your ELPA installation path.

5.2 Key-Value pairs

Every ELPA object is controlled via key-value pairs. Note, that ELPA knows two types of key-
value pairs:

� Mandatory parameters: settings which are fixed for the lifetime of an ELPA object and
must be set before calling the setup procedure, e.g. a matrix size. If you want to change
any of these parameters, you have to create a new ELPA object. Note that as many ELPA
objects as needed can be instanciated at the same time. These parameters are listed in
Sec. 5.2.1.

� Runtime options: key-value pairs which control the runtime of the ELPA library for a
given ELPA object. These options might either control the program flow, such as using
GPUs or the 1-stage or 2-stage solver, or the performance of the ELPA library, by tuning
the algorithmic execution to the hardware and problem size. Whether a key-value pair is
available or has an effect, depends on the supported API version of the ELPA library used
(see Sec. 5.1), the API version initialized, and also on the build options of the ELPA library.
Runtime option values can be adjusted between calls to the ELPA math-routines. Most
common runtime options are listed in Sec. 5.2.2, and some additional expert options are
listed in Appendix. B.

The values of key-value pairs can be integers, floating-point (float or double) numbers, boolean
flags (0 or 1), or special data types. The accepted values are specified below together with their
default values if applicable.

5.2.1 Mandatory parameters

The following key-value pairs are mandatory parameters which must be set for each ELPA object,
before calling the setup procedure and then cannot be changed anymore:

na Integer. Global matrix size na× na.

nev Integer. Number of eigenvalues and/or eigenvectors to be computed.
0 ≤ nev ≤ na

nblk Integer. Block size for the block-cyclic matrix layout. Must be a power
of two. Typical values for CPU execution are 16 or 32. For GPU
computations, 64 or larger are favorable and 1024 is the maximal
allowed value. Note that the parameter’s value should be chosen in
accordance with the the most favorable BLACS distribution of your
application.

31

local_nrows Integer. Number of rows of the local matrix stored on the given MPI
process. Can be determined using the ScaLAPACK function numroc.

local_ncols Integer. Number of columns of the local matrix stored on the given
MPI process. Can be determined using the ScaLAPACK function
numroc.

mpi_comm_parent MPI Comm. Global MPI communicator comprising all MPI ranks used
by ELPA. Mandatory if MPI is enabled.

blacs_context Integer. The blacs context for the valid BLACS distribution as
obtained from the BLACS funtions.

Note that it is mandatory the set the parameters local_nrows, local_ncols to describe the
dimension of the local sub-matrices of the distributed global matrix of size na × na. It is also
mandatory to set the parameter mpi_comm_parent to provide the global MPI communicator of
all ranks to be used in the calculations.

However, ELPA does also need the information how the MPI setup is spanning a 2D grid of
row and column MPI processes. You have two possible ways how to provide this information to
ELPA:

1. The splitting of the communicator mpi_comm_parent (typically that is MPI_COMM_WORLD)
into the mpi_comm_rows and mpi_comm_cols communicators is done in your application
before the ELPA object is setup. Then you can provide this communicators to ELPA. If
you choose this option it is mandatory to set the following parameters:

mpi_comm_rows MPI Comm. MPI communicator for the MPI processes organized
in rows.

mpi_comm_cols MPI Comm. MPI communicator for the MPI processes organized
in columns.

2. ELPA should internally split the provided mpi_comm_parent communicator into the inter-
nally used mpi_comm_rows and mpi_comm_cols communicators. If you choose this option
since you do not want to provide the mpi_comm_rows and mpi_comm_cols communicators,
it is mandatory to set the following parameters:

process_row Integer. The row id of the MPI rank in the row communicator as
obtained from the BLACS routines.

process_col Integer. The column id of the MPI rank in the column
communicator as obtained from the BLACS routines.

Note that per instanciated ELPA object one has to decide for one of the two options discussed
above. It is not allowed to provide a combination of the parameters from both options, since the
setup method will not accept such input.

In addition to the above mentioned mandatory parameters for seting up the ELPA object, one
can provide additional parameters to describe the MPI setup:

num_processes Integer. Total number of MPI ranks in mpi_comm_parent.

num_process_rows Integer. Total number of MPI ranks in mpi_comm_rows.

num_process_cols Integer. Total number of MPI ranks in mpi_comm_cols.

process_id Integer. Rank number of each MPI task in mpi_comm_parent.

32

Setting these parameters is not necessary, since ELPA can deduce them from the mandatory
parameters and will set them internally if they are not provided by the user. However, it is
recommended to set them, since we have observed that this helps users to organize their code and
keep an understanding on how the ELPA object is set up.

5.2.2 Runtime options

The following parameters are optional.

5.2.2.a General runtime options

omp_threads Integer. Number of OpenMP threads to use. Only relevant if ELPA
has been configured with --enable-openmp.
Default: 1

solver Either ELPA_SOLVER_1STAGE or ELPA_SOLVER_2STAGE. Specify which
solver to use: ELPA1 or ELPA2. This choice can influence the
performance considerably. If unsure, measure and compare the runtime
of both solvers.
Default: ELPA_SOLVER_1STAGE

real_kernel Real kernel to use if solver is set to ELPA_SOLVER_2STAGE.
Default: set by configuration option --with-default-real-kernel

complex_kernel Complex kernel to use if solver is set to ELPA_SOLVER_2STAGE.
Default: set by configuration option
--with-default-complex-kernel

5.2.2.b Runtime options for GPU

The following parameters are related to running ELPA on GPUs. All flags can be enabled or
disabled by setting them to 1 or 0, respectively.

nvidia-gpu Enable GPU acceleration using Nvidia GPUs. Only available if ELPA
has been configured with --enable-nvidia-gpu.
Default: 0 (= disabled)

intel-gpu Enable GPU acceleration using Intel GPUs. Only available if ELPA
has been configured with --enable-intel-gpu-backend=sycl and
--enable-intel-gpu-sycl-kernels. Additionally, ELPA must be
configured with the support of Intel ifx compiler
--enable-ifx-compiler.
Default: 0 (= disabled)

amd-gpu Enable GPU acceleration using AMD GPUs. Only available if ELPA
has been configured with --enable-amd-gpu.
Default: 0 (= disabled)

use_gpu_id Integer. Specify which GPU should be used by the calling MPI task.

5.2.2.c Runtime options for debugging

The following switches control additional measurements or output, which can be conveniently
used for debugging.

33

verbose Print verbose information about calculations and errors. This option
can be enabled without performance loss.
Default: 0 (= disabled)

debug Print debugging information. Additional checks are performed and
additional timing information is gathered. Enabling this option
decreases performance and is not recommended for production.
Default: 0 (= disabled)

output_build_config

Print the options with which ELPA has been configured and built.

output_pinning_information

Print pinning information, i.e. association of OpenMP threads to cores.
Default: 0 (= disabled)

print_flops Enable printing FLOP rates.
Default: 0 (= disabled)

timings Enable the detailed timings measurement. Only available if ELPA has
been configured with --enable-timings. This option can be enabled
without performance loss. It should not be disabled if autotuning is
used. Although it’s a runtime option, it has to be enabled once before
calling elpa_setup() to set up the timer, then timings can be
switched on and off between the calls to ELPA solver routines like
other runtime options. See also Sec. 6.3.
Default: 1 (= enabled)

measure_performance

Measure FLOP rates together with the timings using PAPI. Only
available if ELPA has been configured with --enable-timings.
Default: 0 (= disabled)

5.3 Math routines provided by ELPA

ELPA provides numerous math routines needed for solving symmetric, or hermitian (generalized)
eigenvalue problems. If not stated otherwise, all routines are available for real and complex
double-precision calculations. If ELPA has been build with single-precision support, the routines
are also available for real and complex single-precision datatypes.

In the following “all datatypes” means real and complex double and single-precision. Please
note that all ELPA procedures have in common that they have a sligthly different synopsis
depending whether ELPA is used form Fortran or C/C++. The difference, however, follows
a single pattern:

� In Fortran programs ELPA procedures are always used in the form
yourELPAobjectInstance%procedurename.

� In C/C++ programs ELPA procedures have always an additional first argument – the
handle to yourELPAobjectInstance and procedure names are preceded with the prefix
elpa_.

For simplicity, only the Fortran synopsis is shown here. More details, and also the C/C++
synopsis can be found in Appendix D.

34

5.3.1 Standard eigenvalue problem

Important note for the GPU users

The overloaded convenience functions, like eigenvalues() can only be used if the data has
been allocated on the host. If the data has been allocated on the GPU device, an automatic
destinction of datatypes is not possible and one has to use the explicit functions specifying
the datatype, e.g. eigenvalues_double().

For the standard eigenvalue problem the following routines are provided:

eigenvalues(a, ev, error)

Overloaded function (for all datatypes) that returns only the eigenvalues. Here:
a is the host matrix,
ev is the host eigenvalue array,
error is the return code.

eigenvectors(a, ev, z, error)

Overloaded function (for all datatypes) that returns (part of) the eigenvalues and
the corresponding eigenvectors. Here:
a is the host matrix,
ev is the host eigenvalue array,
z is the host matrix of eigenvectors,
error is the return code.

eigenvalues [double|single|double complex|single complex](a, ev, error)

Explicit function (for all datatypes) that returns only the eigenvalues. Here:
a is the host/device matrix,
ev is the host/device eigenvalue array,
error is the return code.

eigenvectors [double|single|double complex|single complex](a, ev, z, error)

Explicit function (for all datatypes) that returns (part of) the eigenvalues and the
corresponding eigenvectors. Here:
a is the host/device matrix,
ev is the host/device eigenvalue array,
z is the host/device matrix of eigenvectors,
error is the return code.

Note that if ELPA has been build with the support for real skew-symmetric matrices, then in addi-
tion the procedures skew eigenvalues, skew eigenvalues [double|float], skew eigenvectors

and skew eigenvectors [double|float] are available.

5.3.2 Generalized eigenvalue problem

Important note for the GPU users

There are currently no routines for the generalized eigenvalue problems that support that the
data is already allocated on a GPU. This will come in the next release.

For the generalized eigenvalue problem AZ = λBZ the following routines are provided:

generalized eigenvalues(a, b, ev, isAlreadyDecomposed, error)

Overloaded function (for all datatypes) that only returns (part of) the eigenvalues.
Here

35

a is the host matrix,
b is the B host matrix,
ev is the host eigenvalue array,
z is the host matrix of eigenvectors,
error is the return code.
isAlreadyDecomposed allows one can skip the decomposition if the b matrix stays
the same between subsequent calls.

generalized eigenvectors(a, ev, b, z, isAlreadyDecomposed, error)

Overloaded function (for all datatypes) that returns (part of) the eigenvalues and
the corresponding eigenvectors. Here
a is the host matrix,
b is the B host matrix,
ev is the host eigenvalue array,
z is the host matrix of eigenvectors,
error is the return code.
isAlreadyDecomposed allows one can skip the decomposition if the b matrix stays
the same between subsequent calls.

5.3.3 Auxillary routines

Important note for the GPU users

The overloaded convenience functions, like cholesky() can only be used if the data has been
allocated on the host. If the data has been allocated on the GPU device, an automatic
destinction of datatypes is not possible and one has to use the explicit functions specifying
the datatype, e.g. cholesky_double().

These auxillary routines are internally used by ELPA for transforming a generalized eigenvalue
problem to a standard eigenvalue problem. Since these routines do offer GPU support (unlike
in ScaLAPACK), and generally perform better also on CPUs than the respectice ScaLAPACK
implementations, these routines are also available via the API. These procedures are:

cholesky(a, error)

Overloaded function (for all datatypes) that returns the Cholesky decomposition
for the host matrix a.

cholesky [double|float|double complex|float complex](a, error)

Explicit function (for all datatypes) that returns the Cholesky deomposition of the
host/device matrix a.

hermitian multiply(uplo a,uplo c,ncb,a,b,nrows b,ncols b,c,nrows c,ncols c,error)

Overloaded function (for all datatypes) that multiplies the transposed/hermitian
conjugated matrix A with matrix B and stores the result in matrix C = AT/HB.
Here:
uplo a is set to ‘U’ if A is upper triangular, ‘L’ if A is lower triangular, or
anything else if A is a full matrix;
uplo c is set to ‘U’ if only the upper triangular part of C is needed, ‘L’ if only the
lower triangular part of C is needed, or anything else full matrix C is needed;
ncb is the number of columns of the global matrices b and c;
a is the host matrix A,
b is the host matrix B,
nrows b is the number of rows of matrix b;

36

ncols b is the number of columns of matrix b;
c is the host matrix C,
nrows c is the number of rows of matrix c;
ncols c is the number of columns of matrix c;
error is the return code.

hermitian multiply [double|float|double complex|float complex]

(uplo a,uplo c,ncb,a,b,nrows b,ncols b,c,nrows c,ncols c,error)

Explicit function (for all datatypes) that multiplies the transposed/hermitian
conjugated matrix a with matrix b and stores the results in matrix c. Arguments
are the same as above except:
a is the host/device matrix A,
b is the host/device matrix B,
c is the host/device matrix C.

invert triangular(a, error elpa)

Overloaded function (for all datatypes) that inverts the upper triangular host
matrix a.

invert triangular [double|float|double complex|float complex](a, error elpa)

Explicit function (for all datatypes) that inverts the upper triangular host/device
matrix a.

5.4 Using ELPA without MPI

Important note for the users

We strongly discourage using ELPA in a non-MPI mode for production runs.

5.4.1 Sequential mode

Although the main focus of ELPA is on massively parallel execution, to get acquainted with it,
it can be useful to test ELPA in a sequential mode first. In this case, the following steps (already
outlined in Sec. 2.1) have to be taken:

1. Use/include the elpa module

Fortran

use elpa

C/C++

#include <elpa/elpa.h>

2. Define a handle for an ELPA object

Fortran

class(elpa_t), pointer :: elpaInstance

integer :: status

C/C++

elpa_t elpaInstance;

int status;

37

3. Initialize ELPA by passing the API version that is going to be used (see Table 1)

Fortran

status = elpa_init(20171201)

if (status /= ELPA_OK) then

print *, "ELPA API version not supported"

stop 1

endif

C/C++

status = elpa_init(20171201);

if (status != ELPA_OK) {

fprintf(stderr, "ELPA API version not supported");

exit(1);

}

4. Allocate the ELPA object

Fortran

elpaInstance => elpa_allocate(status)

if (status /= ELPA_OK) then

print *, "Could not allocate ELPA instance"

stop 1

endif

C/C++

elpaInstance = elpa_allocate(&status);

if (status != ELPA_OK) {

fprintf(stderr, "Could not allocate ELPA instance");

exit(1);

}

We recommend to always check the return status of the ELPA routines. For brevity we
don’t show this in the following steps, but status checks are always asssumed.

5. Specify the information about the input matrix via setting the mandatory parameters. For
the sequential mode the dimensions of the local part of the matrix local_nrows×local_ncols
are equal to these of the global matrix na×na. Also note that even though a BLACS grid as
such is not used for sequential execution, the nblk parameter must be set to some non-zero
value, e.g. to na.

Fortran

! size of the input matrix is na x na

call elpaInstance%set("na", na, status)

! number of eigenvectors to be computed, 0 <= nev <= na

38

call elpaInstance%set("nev", nev, status)

! number of rows of the local part of the matrix

call elpaInstance%set("local_nrows", na, status)

! number of columns of the local part of the matrix

call elpaInstance%set("local_ncols", na, status)

! block size of the BLACS block-cyclic distribution

call elpaInstance%set("nblk", na, status)

C/C++

// size of the input matrix is na x na

elpa_set(elpaInstance, "na", na, &status);

// number of eigenvectors to be computed, 0 <= nev <= na

elpa_set(elpaInstance, "nev", nev, &status);

// number of rows of the local part of the matrix

elpa_set(elpaInstance, "local_nrows", na, &status);

// number of columns of the local part of the matrix

elpa_set(elpaInstance, "local_ncols", na, &status);

// block size of the BLACS block-cyclic distribution

elpa_set(elpaInstance, "nblk", na, &status);

6. Call the setup() routine to complete the problem setup. This step finalizes the setting
of mandatory parameters for the given ELPA object and they can not be changed in the
future.

Fortran

status = elpaInstance%setup()

C/C++

status = elpa_setup(elpaInstance);

7. If desired, set any number of tunable runtime options. These can be changed between
different calls of ELPA solver. A complete list of the runtime options can be found in
Sec. 5.2.2.

Fortran

call elpaInstance%set("solver", ELPA_SOLVER_2STAGE, status)

C/C++

elpa_set(elpaInstance, "solver", ELPA_SOLVER_2STAGE, &status);

39

Important note

ELPA2 is usually the better choice than ELPA1 for performance on CPU

Fortran

! set the AVX BLOCK2 kernel; otherwise ELPA_2STAGE_REAL_DEFAULT is used

call elpaInstance%set("real_kernel",ELPA_2STAGE_REAL_AVX_BLOCK2, status)

C/C++

elpa_set(elpaInstance,"real_kernel",ELPA_2STAGE_REAL_AVX_BLOCK2,&status);

The concept of kernel is specific to ELPA2, and affects its most computationally intensive
part. The default kernel depends on the flags provided during the configure step
(e.g. --enable-avx512-kernels) and is printed out after the configure is finished (e.g.
real_avx512_block2 (default)). The default kernel is usually the best choice, but if
you are not sure, you can measure the performance of different kernels.

You can control the default values of the runtime options by setting the corresponding
enviroment variables, for example:

export ELPA_DEFAULT_solver=ELPA_SOLVER_2STAGE

export ELPA_DEFAULT_real_kernel=ELPA_2STAGE_REAL_AVX_BLOCK2

Hence, if your code doesn’t explicitly set certain ELPA runtime option, in this way you can
change the its value without modifying your code.

8. Call the solver to obtain eigenvalues ev(na) and eigenvectors z(na,na). The input matrix
a(na,na) has to be initialized any time before this step and it’s also a resposibility of the
user to take care of allocation and deallocation of a, ev, and z arrays.

Fortran

call elpaInstance%eigenvectors(a, ev, z, status)

C/C++

elpa_eigenvectors(elpaInstance, a, ev, z, &status);

Important note

The elpa_eigenvectors() routine requires that the matrix of eigenvectors z(na,na)

was of the same size as the input matrix a(na,na), even in the case when only part of
the eigenvectors is requested.

Important note

ELPA relies on the contigousness of the data, hence never use vectors of vectors in C++
to represent the 2D data!

40

Important note

ELPA always assumes the column-major ordering of the matrices. In C/C++, to avoid
the confusion, we recommend to use 1D arrays/vectors.

9. Clean up by deallocating the ELPA object and uninitializing ELPA

Fortran

call elpa_deallocate(elpaInstance)

call elpa_uninit(&status)

C/C++

elpa_deallocate(elpaInstance, &status);

elpa_uninit(&status);

5.4.2 OpenMP mode

Important note for the users

ELPA with OpenMP threads successfully scales only up to ∼ 2 − 8 threads, depending on
the problem parametrs and the hardware. If you want to utilize more CPUs, you should use
ELPA with MPI (Sec. 5.5.1) or in MPI+OpenMP hybrid mode (Sec. 5.5.2).

To enable multi-threading, ELPA should be configured with the switch --enable-openmp=yes.
Needless to say, your compiler should support OpenMP and the corresponding flags should be
provided upon compilations of the users’s code (e.g. -fopenmp for GCC and -qopenmp for Intel
compilers).

If ELPA has been built with OpenMP threading support, you can specify the number of OpenMP
threads that ELPA will use internally. The steps involved in setting up the problem are the same
as for sequential case (see Sec. 5.4.1) with one additional step: to allocate OpenMP threads
for ELPA routines, it is mandatory to set the number of threads as a runtime parameter
using the set() method in addition to setting it in the execution environment (via export

OMP_NUM_THREADS=...):

Fortran

! set 4 threads for the elpa object

call elpaInstance%set("omp_threads", 4, status)

C/C++

elpa_set(elpaInstance, "omp_threads", 4, &status);

ELPA utilizes two different levels of parallelization with OpenMP threads: OpenMP paralleliza-
tion of native ELPA routines (“ELPA-OpenMP”) and the threading of the BLAS-like math library
being in use (“BLAS-OpenMP”). The corresponding two kinds of parallelization regions are in-
dependent of each other and do not overlap. Since there is no nested OpenMP parallelization,
in the optimal setting all the allocated treads either perform ELPA-OpenMP or BLAS-OpenMP

41

work. Hence we recommend to set the OpenMP enviroment variable that prohibits the nested
parallelization OMP_MAX_ACTIVE_LEVELS=1.

In order to utilize the “BLAS-OpenMP” parallelization, please ensure that you link ELPA against
a BLAS/LAPACK library which does offer threading support; otherwise, a severe performance
loss will be encountered. Please refer to the documentation of your math library for details on
multi-threading support and how to activate it.

In particular, if Intel MKL is used, ELPA has to be linked with the threaded MKL library
-lmkl_intel_thread (and not -lmkl_sequential). Then the “BLAS-OpenMP” number of
threads can be controlled by MKL_NUM_THREADS environment variable that can be set by the
user to any value ≤$SLURM_CPUS_PER_TASK. We recommend, however, to allow MKL to pick the
number of threads dynamically by setting MKL_DYNAMIC=TRUE.

Important note for the users

In production, for reasons of best performance, users should not build ELPA with OpenMP
support if the BLAS/LAPACK library does not suppport threading parallelism.

The number of “ELPA-OpenMP” threads can be set via the OMP_NUM_THREADS variable. The
corresponding dynamic threading OMP_DYNAMIC is currently not supported by ELPA.

Summarizing, the following settings are recommended for optimal performance:

export OMP_MAX_ACTIVE_LEVELS=1

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

export MKL_DYNAMIC=TRUE

5.5 Using ELPA with MPI

Important note for the users

Since main scope of ELPA is massively parallel calculations, ELPA is not optimized for the
use with only 1 MPI rank. Using at least 2 MPI ranks is strongly recommended.

5.5.1 Plain MPI mode

ELPA uses MPI to support the distributed-memory parallel execution model which also allows it
to scale beyond one compute node. In this case, the distribution of the input matrix as well as
the internal data follows the block-cyclic model, same as used by the BLACS and ScaLAPACK
libraries. Consequently, before calling ELPA, the user has to set up the BLACS grid and initialize
the input matrix accordingly.

1-4. These steps are the same as in Sec. 5.4.1. Here we initialize ELPA and allocate ELPA
object. The additional initialization steps needed to set up the MPI and the BLACS grid are
sketched in Appendix C.

5. Specify the information about the input matrix. Note that compared to Step 5 in Sec. 5.4.1,
there are three additional parameters that must be set, namely the MPI parent communi-
cator, as well as the row and column indices for every processor:

42

Fortran

! size of the input matrix is na x na

call elpaInstance%set("na", na, status)

! number of eigenvectors to be computed, 0 <= nev <= na

call elpaInstance%set("nev", nev, status)

! number of rows of the local part of the distributed matrix

call elpaInstance%set("local_nrows", na_rows, status)

! number of columns of the local part of the distributed matrix

call elpaInstance%set("local_ncols", na_cols, status)

! block size of the BLACS block-cyclic distribution

call elpaInstance%set("nblk", nblk, status)

! the global MPI communicator

call elpaInstance%set("mpi_comm_parent", MPI_COMM_WORLD, status)

! row coordinate of MPI process

call elpaInstance%set("process_row", my_prow, status)

! column coordinate of MPI process

call elpaInstance%set("process_col", my_pcol, status)

C/C++

elpa_set(elpaInstance, "na", na, &status);

elpa_set(elpaInstance, "nev", nev, &status);

elpa_set(elpaInstance, "local_nrows", na_rows, &status);

elpa_set(elpaInstance, "local_ncols", na_cols, &status);

elpa_set(elpaInstance, "nblk", nblk, &status);

elpa_set(elpaInstance, "mpi_comm_parent", MPI_Comm_c2f(MPI_COMM_WORLD),

&status);

elpa_set(elpaInstance, "process_row", my_prow, &status);

elpa_set(elpaInstance, "process_col", my_pcol, &status);

Note that for C/C++ case, the MPI communicator has to be converted to the Fortran
integer type using MPI_Comm_c2f() function.

From here on, the remaining steps are the same as steps 5 through 8 as outlined in the
previous section. For the sake of clarity and to avoid confusion, we include them here as
well:

6. Call the setup() function to finalize the setting of mandatory parameters for the given
ELPA object.

Fortran

status = elpaInstance%setup()

C/C++

status = elpa_setup(elpaInstance);

43

7. If desired, set any number of tunable runtime options.

Fortran

call elpaInstance%set("solver", ELPA_SOLVER_2STAGE, status)

call elpaInstance%set("real_kernel",ELPA_2STAGE_REAL_AVX_BLOCK2, status)

C/C++

elpa_set(elpaInstance, "solver", ELPA_SOLVER_2STAGE, &status);

elpa_set(elpaInstance,"real_kernel",ELPA_2STAGE_REAL_AVX_BLOCK2,&status);

8. Call the solver to obtain eigenvalues ev(1:na) and eigenvectors z(na_rows,na_cols) of
matrix a(na_rows,na_cols).

Fortran

call elpaInstance%eigenvectors(a, ev, z, status)

C/C++

elpa_eigenvectors(elpaInstance, a, ev, z, &status);

Here a, z are the local parts of the corresponding distributed matrices; ev is the global array
of eigenvalues – it has to be allocated on each task and the result is available on each task.

Important note

The elpa_eigenvectors() routine requires that the local part of the matrix of eigen-
vectors z(na_rows,na_cols) was of the same size as the local part of the input matrix
a(na_rows,na_cols), even in the case when only part of the eigenvectors is requested.

Important note

ELPA always assumes the column-major ordering of the local parts of the matrices. In
C/C++, to avoid the confusion, we recommend to use 1D arrays/vectors.

9. Clean up ELPA

Fortran

call elpa_deallocate(elpaInstance, status)

call elpa_uninit(status)

C/C++

elpa_deallocate(elpaInstance, &status);

elpa_uninit(&status);

For correctness, keep in mind to also call mpi_finalize() at the end of your program.

44

5.5.2 Hybrid MPI+OpenMP mode

The steps needed to set up the program combine those outlined in Sections 5.4.2 and 5.5.1.
Additionally, in case of hybrid MPI and OpenMP execution, it is mandatory that your MPI
library is thread-compliant, i.e. that it supports the threading levels MPI_THREAD_SERIALIZED

or MPI_THREAD_MULTIPLE (support of MPI_THREAD_FUNNELED is not guaranteed). In this case,
instead of calling mpi_init, you should call mpi_init_thread, e.g.:

Fortran

integer :: thread_level

call MPI_Init_thread(MPI_THREAD_MULTIPLE, thread_level, mpierr)

C/C++

int thread_level;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &thread_level);

You can check whether your MPI library is thread-compliant e.g. by running one of the ELPA
test suite programs, which will warn you if this prerequisite is not met.

If your MPI library is not thread-compliant, ELPA will internally (independent of your ap-
plied setting) use only one OpenMP thread, and you will be informed at runtime with a warn-
ing. The number of threads used in a threaded implementation of your BLAS library will
not be affected by this as long as these threads can be controlled through another method
than specifying OMP_NUM_THREADS (for instance with Intel MKL library where you can specify
MKL_NUM_THREADS).

For the optimal performance of ELPA in the hybrid MPI-OpenMP mode, it is important that
the combination of the number of MPI tasks and OpenMP threads does not over-subscribe the
compute nodes. Also, nested OpenMP regions should be disabled (see Sec. 5.4.2). Last but not
least, please also make sure that the MPI tasks, as well as the OpenMP threads per task are
pinned in an appropriate way defined for your system. Consequently, the following requirements
should be fulfilled:

1. # MPI tasks per node × # OpenMP threads per task ≤ # cores per node

2. Set the number of ELPA-OpenMP threads via the OMP_NUM_THREADS variable

3. Set the number of BLAS-OpenMP threads for the math library. For Intel MKL, MKL_NUM_THREADS
can be set to a value larger than 1 or, preferably, MKL_DYNAMIC=TRUE should be used.

4. Process/thread migration should be prevented via correct pinning of MPI tasks and OpenMP
threads, but do not pin to hyperthreads

5.6 Using GPU acceleration

Important note for the GPU users

For production runs it is strongly recommeneded to use GPU in the hybrid MPI+GPU exe-
cution model with at least of total 2 MPI ranks.

Currently, Nvidia, AMD, and Intel GPUs are supported. You have to make sure that ELPA has
been configured with GPU support as explained earlier in Sec. 3.2.

45

ELPA can be compiled with all parallelization models (MPI, OpenMP, GPU). However, at runtime
only either GPU or OpenMP can be used. If both are enabled, then only GPU will be used. We
recommend to use ELPA in the hybrid MPI+GPU execution model.

The initial steps needed to set up the program are similar to those outlined in Steps 1-6 of
Sec. 5.4.1 for the sequential case or of Sec. 5.5.1 for the MPI case, which conclude by setting up
the ELPA object status=elpaInstance%setup() and hence finilizing the values of mandatory
parameters. Below we emphasize the differencies with respect to the Steps 7-8 specific to the
GPU execution model.

7. Set the runtime options to use the GPU.

Use of GPU in ELPA can be switched on by setting the corresponding runtime option (which
can be done after all the mandatory parameters had been set and finalized with), e.g.:

Fortran

! Choose only one architecture: "nvidia-gpu", "amd-gpu", or "intel-gpu"

! 1=on, 0=off

call elpaInstance%set("nvidia-gpu", 1, status)

call elpaInstance%set("solver", ELPA_SOLVER_1STAGE, status)

C/C++

elpa_set(elpaInstance, "nvidia-gpu", 1, &status);

elpa_set(elpaInstance, "solver", ELPA_SOLVER_1STAGE, &status);

Important note for the GPU users

ELPA1 is usually the better choice than ELPA2 for the performance on GPU, but if the
local matrix size becomes very small, ELPA2 still can be faster.

For MPI programs, one has to ensure that the number of MPI tasks per GPU device is
constant across all GPUs. By default, ELPA will automatically assign each MPI task to a
certain GPU device in a round-robin fashion. However, this assignment can also be done
manually by setting the use_gpu_id runtime option, e.g.:

Fortran

! optional step: manually assign the GPU device to each the MPI task

my_gpu_id = mod(myrank, number_of_GPU_devices_per_node)

call elpaInstance%set("use_gpu_id", my_gpu_id, status)

C/C++

my_gpu_id = myrank%number_of_GPU_devices_per_node;

elpa_set(elpaInstance, "use_gpu_id", my_gpu_id, &status);

To finalize the GPU setup one has to call the routine:

46

Fortran

status = elpaInstance%setup_gpu()

C/C++

status = elpa_setup_gpu(elpaInstance);

8. Call the desired ELPA solver routine. There is a special ELPA API that explicitly specifies
the data type and it can be used for both host- and device-allocated data:

Fortran

call elpaInstance%eigenvectors_double(a_host_or_dev, ev_host_or_dev, &

z_host_or_dev, status)

C/C++

elpa_eigenvectors_double(elpaInstance, a_host_or_dev, ev_host_or_dev,

z_host_or_dev, &status);

Here ELPA will automatically detect where the arrays a_host_or_dev, ev_host_or_dev,
z_host_or_dev were allocated (either all on host or all on device) and perform the data
transfers if needed.

If the data were allocated on host, one can also use the traditional ELPA API:

Fortran

call elpaInstance%eigenvectors(a_host, ev_host, z_host, status)

C/C++

elpa_eigenvectors(elpaInstance, a_host, ev_host, z_host, &status);

Here ELPA will automatically detect the datatype of the arrays a_host, ev_host, z_host
but they have to be allocated on the host.

5.6.1 Using GPU streams

For Nvidia and AMD GPUs, it is recommended to use streams to achieve the best performance.
They are enabled by default and no special action is needed to use them. If, for some special
reason, the user wants to disable the GPU streams, this has to be done at the configure stage
by setting --enable-gpu-streams=no flag.

5.6.2 Using GPU solver libraries

For Nvidia and AMD GPUs, it is recommended to use solver libraries (cuSOLVER, rocSOLVER)
to achieve the best performance of ELPA generalized eigenproblem and auxillary routines:
elpa_generalized_eigenvalues, elpa_generalized_eigenvectors, elpa_cholesky,
elpa_invert_triangular.

For Nvidia and AMD GPUs, the solver libraries are enabled by default and no special ac-
tion is needed to use them. If the user wants to disable the GPU solver libraries (e.g. when
the solver libraries are not available), this has to be done at the configure stage by setting
--with-cusolver=no or --with-rocsolver=no.

47

5.6.3 Using NCCL/RCCL communication libraries

To maximize the ELPA performance, it is recommended use vendor-specific communication li-
braries. The current release of ELPA supports NCCL for Nvidia GPUs and RCCL for AMD
GPUs. They can be enabled during the configure step by adding the -enable-gpu-ccl=nccl

or rccl flags respectively, for which also the GPU streams (Sec. 5.6.1) have to be enabled. Then
ELPA will automatically use NCCL/RCCL for GPU runs.

Important note for the GPU users

If NCCL/RCCL is enabled, the number of MPI tasks per GPU device must be equal to one.

5.6.4 Using several MPI tasks per GPU

If ELPA was installed without NCCL/RCCL support, then, in principle, more than one MPI
task per GPU device can be used. For Nvidia GPUs this can be very beneficial if the Nvidia
Multi-Process Service (MPS) is used.

Using several MPI processes per GPU device can be especially beneficial for Nvidia GPUs, where
performance can be substantially improved if the Nvidia Multi-Process Service (MPS) is activated
on each node. The MPS daemon must be started exactly once per node. Some batch submission
systems take care of this automatically. Check with your system administrator if this feature is
provided; otherwise, the following mechanism can be used to set up MPS properly.

In the submission script, here using SLURM just as an example, we call the mpi launcher to run
a wrapper script. This way, in the wrapper script, the process IDs can be queried where only
one process (e.g. process 0) sets up the MPS server:

1. In the job submission script:

set up the environment

...

srun ./wrapper_script.sh

2. In the wrapper_script.sh:

#!/bin/bash

only process 0 sets up the MPS server:

if [$SLURM_LOCALID -eq 0]; then

nvidia-cuda-mps-control -d

fi

now launch the program

./<your_executable> <input_arguments>

More details on ELPA on GPUs and Nvidia MPS can be found here. Analogous service for Intel
GPUs Compute Aggregation Layer (CAL) is also available but not yet have been tested by the
ELPA team.

However, it can happen that the optimal number of MPI processes per GPU for ELPA differs
from the optimal number of MPI processes per GPU for the parent application. In this case, the
application may use two different MPI communicators, one internal to the application itself which
handles all the available physical cores, and one for ELPA containing the optimal number of MPI
processes per GPU device. Consequently, the entire input matrix should be redistributed over
these MPI processes that call ELPA. When redistributing the matrix, care has to be taken so that

48

https://www.sciencedirect.com/science/article/abs/pii/S0010465520304021
https://github.com/intel/compute-aggregation-layer

the first row and the first column of the redistributed matrix are located on the 0-th processors
row and the 0-th processors column, respectively. Of course, it has to be tested whether the
additional performance achieved is actually worth the extra effort that goes to communicator
splitting and data redistribution. In any case, ELPA works correctly with any desired number of
MPI processes per GPU device, and the discussion above is only for the sake of improving the
performance.

5.6.5 Other tips for using ELPA-GPU

� Matrix size

If matrix size is too small (e.g. . 5000 × 5000 per GPU), the GPU version of ELPA may
be not beneficial over the CPU version.

� ELPA1-GPU vs ELPA2-GPU

For the GPU calculations, unlike the CPU ones, ELPA1 usually has significantly better
performance than ELPA2. The only exception is when the local matrix size becomes very
small (e.g. . 500 × 500 per GPU), where ELPA2 can still be faster. But in such cases,
already the CPU version of ELPA should be preferred.

� Explicitly set the compute capability

If you still need ELPA2 with NVIDIA GPUs, make sure that the configure command also
explicitly sets the compute capability variable to the highest level supported by your hard-
ware. For instance, for A100 devices, it should be set to sm_80. Please also ensure that, at
the end of the configure step, the ELPA2 GPU kernels are listed.

5.7 Using ELPA from Python

In order to use ELPA within your python code, a wrapper has to be generated, which allows
you to import ELPA’s functionality via a generated shared object. For the generation of the
wrapper, several python packages are needed to be installed in your system, notably mpi4py,
cython, and pytest. Then during ELPA’s configure step the additional two flags have to be
provided: --enable-python and --enable-python-tests. Then, after compilation using make,
run the install command

make install

which installs ELPA to /absolute_path_to_elpa specified by --prefix (as in Sec. 3.4). Upon
successfull installation, the following message will be printed:

Libraries have been installed in:

/absolute_path_to_elpa/lib/python3.x/site-packages/pyelpa

This path containing the pyelpa package must be included in your system’s PYTHONPATH using
e.g.

export PYTHONPATH=/absolute_path_to_elpa/lib/python3.x/site-packages:$PYTHONPATH

Note that ‘x’ refers to the minor version of your system’s python3 installation, e.g. python3.10.
Note also that, similar to using ELPA from a C or Fortran program, the path to where ELPA’s
shared libraries are generated must be known to the loader at runtime. This can be done using
either the rpath mechanism, or by adding the path to the LD_LIBRARY_PATH. The exact path is
/absolute_path_to_elpa/lib as described in Sec. 4.2.

Now you should be able to import the shared object into your python code:

49

from pyelpa import DistributedMatrix

To actually use ELPA from python, there are a few steps to be taken to set up and solve the prob-
lem. The example code included in the ELPA repository under python/examples/example.py

shows these steps. For the sake of brevity and to avoid repetition, it will not be included here.
It is worthwhile to mention however, that as the example shows, there are two different ways to
go over the elements of any matrix (in order to for example set up the input matrix). One is
labelled to be the easiest yet less efficient where the elements are accessed individually one by
one. The other method uses the block structure and is therefore more efficient. The difference in
the efficiency of these methods would likely play a major role for accessing the elements of very
large matrices.

50

6 Best practices

6.1 Autotuning for better performance

ELPA’s autotuning engine is a powerful utility that can optimize a large number of tunable
runtime options. Their optimal values can then be used for subsequent runs. This means that
to obtain these values, ELPA needs to solve the problem once in order to test and compute the
optimal tunable parameters. The first run will likely be sub-optimal however, and, therefore,
autotuning is particularly promising if the problem has to be solved repeatedly as is the case of
self-consistent methods for instance.

To use this feature, the application code must implement a few steps in similar way as explained
earlier in Sec. 5. These steps are explained in the following paragraphs.

1. In your program decleration, declare the following two objects

Fortran

class(elpa_t), pointer :: elpaInstance

class(elpa_autotune_t), pointer :: elpaTuneState

C/C++

elpa_t elpaInstance;

elpa_autotune_t elpaTuneState;

2. Follow the steps needed to set up the problem as explained earlier in Sec. 5

3. Initialize the tuning object

Fortran

elpaTuneState => elpaInstance%autotune_setup(tuning_level, &

tuning_domain, status)

C/C++

elpaTuneState = elpa_autotune_setup(elpaInstance, tuning_level,

tuning_domain, &status);

There are currently three possible values for the parameter tuning_level:

� ELPA_AUTOTUNE_FAST, which includes tuning of the parameters related to the following
items: solver, real_kernel, complex_kernel, omp_threads

� ELPA_AUTOTUNE_MEDIUM, which, in addition to the above-mentioned parameters, in-
cludes the GPU-related ones (gpu_tridiag, gpu_solve_tridi, gpu_trans_ev, gpu_bandred,
gpu_trans_ev_tridi_to_band, gpu_trans_ev_band_to_full) and min_tile_size

� ELPA_AUTOTUNE_EXTENSIVE, includes all of the above parameters plus the ones related
to the following items:
various blocking factors (blocking_in_band_to_full, blocking_in_multiply,
blocking_in_cholesky), max_stored_rows, stripewidth_[real|complex],

51

intermediate_bandwidth

Furthermore, there are parameters that are relevant to real or complex problems only,
while others are relevant to any problem type. The tuning_domain parameter controls
whether tuning will be performed for real (ELPA_AUTOTUNE_DOMAIN_REAL) problems or com-
plex (ELPA_AUTOTUNE_DOMAIN_COMPLEX) problems or for both cases through the parameter
choice ELPA_AUTOTUNE_DOMAIN_ANY.

The list of all tunable parameters can be obtained using a python script included in your
current release. To do so, change directory to the following path

cd elpa_dir/utils/parse_index

where elpa_dir is the main directory that includes all ELPA source files. Next, call the
parser, which prints a list of parameter names and their description to standard output:

python extract_options.py

A complete list of these parameters for the current release is included in Sec. 5.2 and Ap-
pendix B along with a discussion on potential impacts of certain parameters on correctness
and/or performance wherever necessary.

At this stage, if you wish to remove any of the tunable parameters from the tuning process,
you should explicitly set the desired value before going to the next step. The value of the
removed parameter is fixed, which speeds up the autotuning process. For example,

Fortran

call elpaInstance%set("solver", ELPA_SOLVER_2STAGE, status)

C/C++

elpa_set(elpaInstance, "solver", ELPA_SOLVER_2STAGE, &status);

will remove the choice of solver from the set of tunable parameters.

4. Construct a loop in which the solver is iteratively called to solve the same problem until the
tuning engine converges

Remember to keep a copy of the input matrix which will have to be used to restore it because
the solver overwrites the input.

Fortran

iter_max=100

do iter = 1, iter_max

! logical :: unfinished,

unfinished = elpaInstance%autotune_step(elpaTuneState, status)

if (.not. unfinished) exit ! exit the loop if autotuning is finished

! Solve EV problem

call elpaInstance%eigenvectors(a, ev, z, status)

52

! Print the current autotune state

call elpaInstance%autotune_print_state(elpaTuneState)

! restore the matrix

a(:,:) = a_copy(:,:)

end do

C/C++

int iter_max = 100;

for (int iter=1; iter <= iter_max; iter++) {

int unfinished = elpa_autotune_step(elpaInstance, elpaTuneState,

&status);

if (unfinished == 0) break; // exit the loop if autotuning is finished

// Solve EV problem

elpa_eigenvectors(elpaInstance, a, ev, z, &status);

// Print the current autotune state

elpa_autotune_print_state(elpaInstance, elpaTuneState, &status);

// restore the matrix

for (int k = 0; k<na_rows*na_cols; k++) a[k] = a_copy[k];

}

Every iteration of the loop will test a new combination of parameters and the autotuning
engine will update the elpaTuneState object which carries both the currently testet state
and the best state found so far.

5. Set and print the optimal settings

Once the tuning is done, the converged parameters can be set as the best combination by
calling the subroutine elpaInstance%autotune_set_best(). Afterwards, repeated calls to
the solver will run using the optimal parameters.

Fortran

call elpaInstance%autotune_save_state(elpaTuneState, "saved_state.txt", &

status)

call elpaInstance%autotune_set_best(elpaTuneState, status)

! Print the best combination found by the autotuning

call elpaInstance%autotune_print_best(elpaTuneState, status)

C/C++

elpa_autotune_save_state(elpaInstance, elpaTuneState, "saved_state.txt",

&status);

53

elpa_autotune_set_best(elpaInstance, elpaTuneState, &status);

// Print the best combination found by the autotuning

elpa_autotune_print_best(elpaInstance, elpaTuneState, &status);

6. Finally, deallocate the objects and finalize the program

Fortran

call elpa_autotune_deallocate(elpaTuneState, status)

call elpa_deallocate(elpaInstance, status)

call elpa_uninit(status)

C/C++

elpa_autotune_deallocate(elpaTuneState, &status);

elpa_deallocate(elpaInstance, &status);

elpa_uninit(&status);

6.2 Choosing the optimal BLACS grid

The following information holds for all runs of ELPA as long as MPI is used, including also plain
MPI and hybrid MPI+OpenMP runs.

For MPI runs, ELPA requires that matrices are distributed in a BLACS block-cyclic distribution.
The BLACS matrix layout representation can be chosen to be either “row-major” or “column-
major”. The choice migth depend on the requirements of your application. ELPA works with
both choices, but for the best performance, it might be necessary that both alternatives are tested.
In case there is no special requirement from the application’s perspecive, we recommend to use
the “column-major” ordering.

Furthermore, the distribution of the MPI processes into a logical, 2D process grid should be
specified. This setup is then used to address the BLACS block-cyclic distributed matrix with
“row” and “column” processes. ELPA works correctly irrespective of the choice of the 2D processor
grid, which is automatically deduced by ELPA from the underlying BLACS grid:

Fortran

call blacs_gridinit(ictxt, layout, np_rows, np_cols)

C/C++

Cblacs_gridinit(&ictxt, layout, np_rows, np_cols);

However, the choice of the BLACS matrix layout (column- or row-major) and the 2D BLACS
processor grid dimensions (np_rows, np_cols) can affect the ELPA performance.

6.2.1 Optimal BLACS grid dimensions

As a rule of thumb, ELPA solvers work best if the 2D BLACS processor grid (internal to ELPA)
is quadratic or at least as “quadratic” as possible. For example, using 16 MPI tasks, the setup

54

https://www.netlib.org/scalapack/slug/node75.html

(MPI-rows np_rows=8, MPI-columns np_cols=4) works best. On the other hand, the following
(np_rows, np_cols) setups work correctly but with less-than-optimal performance:

� (8,2)

� (2,8)

� (16,1) → very bad

� (1,16) → very bad

Especially, very elongated setups with only one process row/column should be avoided. This also
implies that the runtime of the solution can be influenced by the number of MPI tasks employed:
in some situations it might be beneficial to use less MPI tasks than there are cores available in
order to ensure that a well-shaped, (almost-)quadratic 2D grid can be set up. For example, on
a hypothetical machine with 13 cores, one should not use all 13 MPI tasks as the only possible
combination of np_rows and np_cols are 1 and 13. Rather, one should use 12 MPI tasks and
leave one core idle to obtain a better distribution of 4×3.

The impact is illustrated in Figure 1 where the run-time for the solution of a real matrix (size
10k) with varying number of MPI processes from 2 to 40 is shown. For prime numbers, only very
elongated process grids are possible, and a dramatic performance drop can be seen. Note that in
all these tests, the choice of the number of processor rows and columns is always as optimal as
possible. Please also note that this setup has been tuned to magnify the effect of the processor
grid, and the execution times do not correspond to the optimal run-time as ELPA was built with
no optimizations for this test.

(a) ELPA 1-stage (b) ELPA 2-stage

Figure 1: Performance impacts of number of MPI processes and hence the 2D processor grid
dimensions

One notable exception to the “most quadratic” setup rule of thumb, is the case of using ELPA1,
when the “most quadratic” setup gives the dimensions such that the greatest common divi-
sor of np_rows and np_cols is 1 or a small number. For example, using 72 MPI tasks, the
setup that maximizes the greatest common divisor (np_rows=6, np_cols=12) can be better
than (np_rows=8, np_cols=9).

In case, when the external application has to run with a processor grid which is sub-optimal for
ELPA, it might be beneficial to re-distribute the matrix to another processor grid (internal to
ELPA) to obtain a better setup.

55

6.2.2 Optimal BLACS layout

The choice of the BLACS grid layout (column- or row-major) can also affect the ELPA perfor-
mance both for square and rectangular BLACS grids.

As an example: using 8 MPI processes, a 2D grid can be chosen to have (np_rows=4, np_cols=2),
or (np_rows=2, np_cols=4) with either column-major layout (“C”) or row-major layout (“R”),
hence the following combinations are possible:

� np_rows=4, np_cols=2 for column-major layout (“C”)

� np_rows=2, np_cols=4 for column-major layout (“C”)

� np_rows=4, np_cols=2 for row-major layout (“R”)

� np_rows=2, np_cols=4 for row-major layout (“R”)

The best setup can depend on many factors, such as the solver used (e.g. ELPA1 vs ELPA2),
the hardware and the process pinning. As a rule of thumb, column-major layout (“C”) should be
preferred over row-major layout (“R”). If unsure, you can test different setups, either directly in
your application or using ELPA test programs, which we descibe next.

6.2.3 ELPA test programs to find the best BLACS settings

ELPA comes with test programs located in the ELPA build folder. These programs are compiled
when you run the make command during the ELPA installation and are located in the .libs

subdirectory of the build directory; .libs has to be also put in LD_LIBRARY_PATH. These tests
can show how performance is affected if the BLACS grid layout and grid dimensions are not set
optimally. For example, you can run:

mpiexec -n 8 \

./validate_real_double_eigenvectors_2stage_default_kernel_random_all_layouts \

2000 2000 32

The test program calculates eigenvectors for real double-precision random matrix with its elements
uniformly distrubuted on [0, 1] interval, using ELPA2 solver with the default kernel and testing
all BLACS layouts. Here the values “2000 2000 32” correspond to the matrix-size (na), the
number of eigenvectors sought (nev), and the block size of BLACS block-cyclic distribution (nblk)
respectively. Consequently, the timings for the solutions of the eigenvalue problem in all possible
combinations of the layout and the 2D processor grid will be obtained.

Caution!

Run this test only for small matrix sizes, otherwise the total runtime will be very large, because
all layouts will be tested.

The ELPA test programs also provide detailed information about the settings as shown in the
excerpt below:

...

Matrix size: 2000

Num eigenvectors: 2000

Blocksize: 32

Num MPI proc: 8

Number of processor rows=2, cols=4, total=8

Process layout: C

56

| Random matrix block has been set up. (only processor 0 confirms this step)

| Random matrix block has been symmetrized

The settings in the test program want to use

ELPA_2STAGE_REAL_AVX2_BLOCK2 kernel

(This might be overriden with some environment settings)

/= Group [s] fraction

| ============ ============

|_ e%eigenvectors() 0.721352 1.000

...

By comparing the execution times for (e.g. 0.721352 seconds in the example above), you can find
the best BLACS grid settings for your problem.

6.3 Track ELPA timings in your application

ELPA has an internal timer that tracks the time spent in the solver as well as in its individual
substeps. To use the timer, several additional steps have to be made on top of the standard ELPA
usage described in Sections 5.4-5.5

1. Timer has to be switched on once before the elpa_setup is called:

Fortran

call elpaInstance%set("timings", 1, status)

status = elpaInstance%setup()

C/C++

elpa_set(elpaInstance, "timings", 1, &status);

status = elpa_setup(elpaInstance);

2. Start the timer before calling the solver and stop it after

Fortran

call elpaInstance%timer_start("elpa_eigenvectors")

call elpaInstance%eigenvectors(a, ev, z, status)

call elpaInstance%timer_stop("elpa_eigenvectors")

C/C++

elpa_timer_start(elpaInstance, (char*) "elpa_eigenvectors");

elpa_eigenvectors(elpaInstance, a, ev, z, &status);

elpa_timer_stop(elpaInstance, (char*) "elpa_eigenvectors");

The label "elpa_eigenvectors" is arbitrary and can be replaced with any other string.

3. Finally, print out the obtainted timings

Fortran

call e%print_times("elpa_eigenvectors")

57

C/C++

elpa_print_times(elpaInstance, (char*) "elpa_eigenvectors");

An excerpt of a sample output is shown below:

/= Group [s] fraction

| ============ ============

|_ elpa_eigenvectors 11.026278 1.000

|_ (own) 0.000004 0.000

|_ elpa_solve_evp_real_1stage_double 11.026274 1.000

|_ (own) 0.000011 0.000

|_ mpi_communication 0.000001 0.000

|_ forward 10.163898 0.922

|_ (own) 0.000004 0.000

|_ tridiag_real_double 10.163894 1.000

|_ (own) 10.052890 0.989

|_ elpa_transpose_vectors_real_double (999 0.075857 0.007

|_ (own) 0.041266 0.544

|_ mpi_communication (24975x) 0.034591 0.456

|_ elpa_reduce_add_vectors_real_double (47 0.035147 0.003

|_ (own) 0.026825 0.763

|_ mpi_communication (9486x) 0.008322 0.237

|_ solve 0.720247 0.065

|_ (own) 0.000006 0.000

|_ solve_tridi_double 0.720241 1.000

...

58

7 Troubleshooting

If you face any issues with using ELPA, the information in this section will help you find a
solution.

7.1 Debugging information

It is very helpful to have debugging information for troubleshooting. To this end, please instruct
ELPA to generate the extra details at run-time using the set() method after instantiating the
elpa object as:

Fortran

call elpaInstance%set("debug", 1, status)

C/C++

elpa_set(elpaInstance, "debug", 1, &status);

Alternatively, if your code does not set the debug flag as described above, you can set the environ-
ment variable export ELPA_DEFAULT_debug=1 either in your shell or in the slurm script before
running the executable. In the event of an issue, please provide the developers with the reported
debug information for troubleshooting. Please also follow the guidelines listed in Section 7.2.

7.2 Reporting bugs and issues

If you run into issues with using ELPA, you are welcome to contact us via
elpa-library@mpcdf.mpg.de. However, please note that in order for us to to successfully find a
solution as quick as possible, it is important that you provide the following information when you
report an issue:

1. Information about the toolchain including which Fortran and C compiler and version as well
as which math library were used. If applicable, also which MPI library and version, and
which GPU compiler

2. The complete command that was used during the build process. Please note that it can
be helpful to specify the configure flag --enable-store-build-config when configuring
ELPA. It will compile the build configuration information into the library object, which can
then be querried if needed

3. “config.log” file

4. Information about the input data including matrix type and size

5. Total of MPI processes, MPI per node, MPI tasks per GPU

6. The error message and any extra debug information generated as explained in Sec. 7.1

59

mailto:elpa-library@mpcdf.mpg.de

8 Contributions guide

It has been and continues to be a tremendous effort to develop and maintain the ELPA library.
Every help to improve ELPA is highly appreciated.

To open pull requests and issues, please use the ELPA repository on GitHub:
https://github.com/marekandreas/elpa

(which is a public mirror of ELPA’s official repo https://gitlab.mpcdf.mpg.de/elpa/elpa)

For recommendations and suggestions, both for improving the code and the documentation, you
can also send an e-mail to elpa-library@mpcdf.mpg.de.

60

https://github.com/marekandreas/elpa
https://gitlab.mpcdf.mpg.de/elpa/elpa
mailto:elpa-library@mpcdf.mpg.de

Appendices

A Expert configure options

Here we list some additional “expert” flags that can be specified during configure step. These
flags are listed for completeness; they are not needed in typical use cases.

--enable-optional-argument-in-C-API

Make the error argument in the C API optional.
Default: disabled

--with-threading-support-check-during-build=[yes|no]

Run a small program during configuration to check sufficient threading
support of the MPI library. Disable only if launching this test program
causes problems, for example, because you are not allowed to run an
MPI program on the machine you are compiling ELPA on.
Default: yes

--disable-runtime-threading-support-checks

Use with caution! Do not verify the required threading support
(MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE) of the MPI library
at runtime. Disable only if you have verified the compatibility of the MPI
library, otherwise ELPA will yield incorrect results without notification.
Default: enabled

--disable-allow-thread-limiting

Use with caution! Do not reduce the number of OpenMP threads to
1 if the MPI library does not offer sufficient threading support
(MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE). Potentially causes
incorrect results.
Default: enabled

--disable-affinity-checking

Do not run thread affinity checks.
Default: enabled

--disable-band-to-full-blocking

Use blocking implementation when transforming from band to full ma-
trix.
Default: enabled

--enable-autotune-redistribute-matrix

Experimental! During autotuning, re-distribute the matrix across the
MPI ranks to find the optimal block size in the block-cyclic distribution.
Requires the corresponding ScaLAPACK functionality.
Default: disabled

--enable-store-build-config

Experimental! If enabled, the build config is stored as a binary blop
into the ELPA library object file and can be retrieved later for debugging.
Default: disabled

61

B Expert key-value runtime option pairs for setting the

ELPA object

Most commonly used rutime options are described in Sec. 5.2.2. Here we list additional runtime
options that are considered to be expert settings. They are not needed in the typical use cases
and documented here for completeness.

B.1 General runtime options

The following are general runtime options, some require deeper understanding and should only
be used by experts.

output_build_config

Integer. If set, and if ELPA has been build to support this the
build-config is printed. This keyword is only available if ELPA has been
build with --enable-store-build-config, otherwise the set and/or
get methods return an ELPA_ERROR_ENTRY_INVALID_VALUE error.
Default: 0 (= disabled)
Auto-tunable: no

output_pinning_information

Integer. If set, some information about the pinning of MPI tasks (and
potentially OpenMP threads) to cores is printed.
Default: 0 (= disabled)
Auto-tunable: no

matrix_order Either COLUMN_MAJOR_ORDER or ROW_MAJOR_ORDER. Define the matrix
layout to be used when the matrix is re-distributed during autotuning.
Only relevant if ELPA has been configured with
--enable-autotune-redistribute-matrix. In all other cases the
matrix layout is automatically deduced by ELPA from the underlying
BLACS grid and this parameter is ignored.
Default: COLUMN_MAJOR_ORDER

Auto-tunable: no

internal_nblk Integer. Block size for the block-cyclic matrix layout used for
re-distribution during autotuning. Only relevant if ELPA has been
configured with --enable-autotune-redistribute-matrix.
Default: none

Auto-tunable: yes

gpu Deprecated. Enable GPU acceleration using Nvidia GPUs. Please
use explicit parameters for the various vendors instead, e.g.
‘nvidia-gpu’, ‘amd-gpu’, or ‘intel-gpu’, since this option is depricated
and will be disabled in the future.
Default: 0 (= disabled)
Auto-tunable: no

nvidia-gpu Enable GPU acceleration using Nvidia GPUs.
Default: 0 (= disabled)
Auto-tunable: yes

amd-gpu Enable GPU acceleration using AMD GPUs.
Default: 0 (= disabled)

62

Auto-tunable: yes

intel-gpu Enable GPU acceleration using Intel GPUs.
Default: 0 (= disabled)
Auto-tunable: yes

sycl_show_all_devices

Utilize ALL SYCL devices, not just Level Zero GPUs.
Default: 0 (= disabled)
Auto-tunable: no

B.2 Runtime options to control the standard solvers

solver Integer. Allows choosing between the ELPA 1stage and 2stage solver.
Possible values are ”ELPA_SOLVER_1STAGE” or ”ELPA_SOLVER_1STAGE.
As a rule of thumb: use the 2stage solver for CPU computations and
the 1stage solver for GPU computations (if the matrix size is at least
10000).
Default: ELPA_SOLVER_1STAGE

Auto-tunable: yes

real_kernel Integer. Real kernel to use if solver is set to ELPA_SOLVER_2STAGE.
Default: set by configuration option --with-default-real-kernel

Auto-tunable: no

complex_kernel Complex kernel to use if solver is set to ELPA_SOLVER_2STAGE.
Default: set by configuration option
--with-default-complex-kernel

Auto-tunable: no

check_pd Integer. If enabled, before computing the eigenvectors a check is done
whether the input matrix is positiv definite (by checking that all
eigenvalues are larger then a threshold. If this condition is not satisfied
the solver returs without computing the eigenvectors.
Default: off
Auto-tunable: no

thres_pd_double Double.The value of the threshold to be checked in conjunction with
the ”check_pd” keyword.
Default: 0.00001
Auto-tunable: no

thres_pd_float Float.The value of the threshold to be checked in conjunction with the
”check_pd” keyword.
Default: 0.00001
Auto-tunable: no

bandwidth Integer. If set, the input matrix is assumed to be a band matrix with
this bandwidth. Must be a multiple of nblk, but at least 2 · nblk.
Auto-tunable: yes

intermediate_bandwidth

Integer. For ELPA2. Intermediate bandwidth used for conversion to
band matrix form.

63

Default: max{64, nblk} for real matrices, max{32, nblk} for complex
matrices
Auto-tunable: yes

min_tile_size Integer. Minimum tile size used in tridiagonalization (ELPA1) and
band reduction (ELPA2).
Default: 128 ·max{np rows, np cols}
Auto-tunable: yes

blocking_in_band_to_full

Integer. For ELPA2. Blocking factor when transforming from band to
full matrix. Only relevant if ELPA has been configured with
--enable-band-to-full-blocking.
Default: 3

Auto-tunable: yes

max_stored_rows Integer. For ELPA1. Maximum number of rows stored in ELPA1
backtransformation.
Default: 256

Auto-tunable: yes

stripewidth_real Integer. For ELPA2. A parameter of ELPA2 backtransformation.
Must be a multiple of 4.
Default: 48

Auto-tunable: yes

stripewidth_complex

Integer. For ELPA2. A parameter of ELPA2 backtransformation.
Must be a multiple of 8.
Default: 96

Auto-tunable: yes

qr 0 or 1. For ELPA2. Use QR decomposition. Only relevant for real
matrices.
Default: 0 (= disabled)
Auto-tunable: no

gpu_tridiag For ELPA1. Tridiagonalize matrix using GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_solve_tridi Both ELPA1, ELPA2. Solve the eigenproblem for tridiagonal matrix on
GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_trans_ev For ELPA1. Compute eigenvector transformation from tridiagonal to
full matrix representation on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_bandred For ELPA2. Compute reduction to band matrix on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_trans_ev_tridi_to_band

64

For ELPA2. Compute eigenvector transformation from tridiagonal to
band matrix representation on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_trans_ev_band_to_full

For ELPA2. Compute eigenvector transformation from band to full
matrix representation on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

B.3 Runtime options to control (parts of) the generalized EVP solvers

Since during the generalized EVP the ELPA 1stage or 2stage solvers are called, the keywords for
the standard EVP also play a role in the computations of the general EVP.

cannon_for_generalized

0 or 1. Use Cannon’s algorithm for the generalized eigenvalue problem.
Default: 1 (= enabled)
Auto-tunable: no

cannon_buffer_size

Integer. If set, use this buffer size for Cannon’s algorithm. Larger
buffers potentially accelerate the algorithm, but occupy more memory.
Only relevant if cannon_for_generalized is 1. cannon_buffer_size
>= 0 cannot be used in conjunction with GPUs runs.
Default: 0

Auto-tunable: no

gpu_cannon Use Cannon’s algorithm for generalized EVP on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_hermitian_multiply

Compute matrix-matrix multiplications on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_invert_trm Compute inversion of upper triangular matrices on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

gpu_cholesky Compute Cholesky factorization on GPUs.
Default: 1 (= enabled)
Auto-tunable: yes

blocking_in_multiply

Blocking used in hermitian multiply step.
Default: 31

Auto-tunable: yes

blocking_in_cholesky

Blocking used in cholesky step.
Default: 128

Auto-tunable: yes

65

B.4 Expert runtime options for collective MPI operations

The runtime options in this section control the communication pattern in ELPA. They allow
switching from blocking to non-blocking communication (NBC) for collective operations for certain
parts of the library. All flags are disabled by default and can be enabled by setting them to 1.

nbc_row_global_gather

Use NBC for rows in global_gather.
Auto-tunable: yes

nbc_col_global_gather

Use NBC for columns in global_gather.
Auto-tunable: yes

nbc_row_global_product

Use NBC for rows in global_product.
Auto-tunable: yes

nbc_col_global_product

Use NBC for columns in global_product.
Auto-tunable: yes

nbc_row_solve_tridi

Use NBC for rows in solve_tridi.
Auto-tunable: yes

nbc_row_transpose_vectors

Use NBC for rows in transpose_vectors.
Auto-tunable: yes

nbc_col_transpose_vectors

Use NBC for columns in transpose_vectors.
Auto-tunable: yes

nbc_row_herm_allreduce

Use NBC for rows in herm_allreduce.
Auto-tunable: yes

nbc_col_herm_allreduce

Use NBC for columns in herm_allreduce.
Auto-tunable: yes

nbc_row_sym_allreduce

Use NBC for rows in sym_allreduce.
Auto-tunable: yes

nbc_col_sym_allreduce

Use NBC for columns in sym_allreduce.
Auto-tunable: yes

nbc_row_elpa1_full_to_tridi

For ELPA1. Use NBC for rows in tridiag.
Auto-tunable: yes

nbc_col_elpa1_full_to_tridi

For ELPA1. Use NBC for columns in tridiag.
Auto-tunable: yes

66

nbc_row_elpa1_tridi_to_full

For ELPA1. Use NBC for rows in trans_ev.
Auto-tunable: yes

nbc_col_elpa1_tridi_to_full

For ELPA1. Use NBC for columns in trans_ev.
Auto-tunable: yes

nbc_row_elpa2_full_to_band

For ELPA2. Use NBC for rows in bandred.
Auto-tunable: yes

nbc_col_elpa2_full_to_band

For ELPA2. Use NBC for columns in bandred.
Auto-tunable: yes

nbc_all_elpa2_band_to_tridi

For ELPA2. Use NBC in tridiag_band.
Auto-tunable: yes

nbc_row_elpa2_tridi_to_band

For ELPA2. Use NBC for rows in trans_ev_tridi_to_band.
Auto-tunable: yes

nbc_col_elpa2_tridi_to_band

For ELPA2. Use NBC for columns in trans_ev_tridi_to_band.
Auto-tunable: yes

nbc_row_elpa2_band_to_full

For ELPA2. Use NBC for rows in trans_ev_band_to_full.
Auto-tunable: yes

nbc_col_elpa2_band_to_full

For ELPA2. Use NBC for columns in trans_ev_band_to_full.
Auto-tunable: yes

nbc_all_elpa2_redist_band

For ELPA2. Use NBC in redist_band.
Auto-tunable: yes

nbc_all_elpa2_main

For ELPA2. Use NBC in elpa_solve_ev.
Auto-tunable: yes

67

C Initialization of MPI and BLACS

In this Appendix, we provide a minimal example of how to initialize MPI and BLACS for using
ELPA. The example is written in Fortran, but the same principles apply to C and C++.

1. Use/include MPI module

Fortran

use mpi

C/C++

#include <mpi.h>

2. Declare variables for the BLACS context and the ScaLAPACK descriptor

Fortran

integer :: ictxt, sc_desc(9)

C/C++

int ictxt, sc_desc[9];

3. MPI Initialization

Fortran

call MPI_Init(mpierr)

C/C++

MPI_Init(&argc, &argv);

4. Select the number of processor rows and columns. The application has to decide how
the input matrix should be distributed. The grid setup may be done in an arbitrary way
as long as it is consistent, i.e. 0 ≤ my prow < np rows, and 0 ≤ my pcol < np cols,
and every process has a unique (my_prow, my_pcol) coordinate pair. For details see the
documentation of BLACS_Gridinit and BLACS_Gridinfo of your BLACS installation. For
better performance, it is recommended to setup the grid such that it is as close to a square
grid as possible.

np_cols = some value

np_rows = some value

5. Set up the BLACS context and MPI communicators. The BLACS context is only necessary
for using the ScaLAPACK routines (e.g. numroc, see below). For ELPA itself, the MPI
communicators along rows and columns are sufficient.

Fortran

call blacs_get(-1, 0, ictxt)

call blacs_gridinit(ictxt, ’C’, np_rows, np_cols)

call blacs_gridinfo(ictxt, np_rows, np_cols, my_prow, my_pcol)

C/C++

Cblacs_get(-1, 0, &ictxt);

Cblacs_gridinit(&ictxt, ’C’, np_rows, np_cols);

Cblacs_gridinfo(ictxt, &np_rows, &np_cols, &my_prow, &my_pcol);

’R’ or ’C’ stands for Row/Column the ordering of the processes in the grid. ELPA works
with either of them.

68

6. For your distributed matrix, compute the number of local rows and columns per MPI task,
e.g. with the ScaLAPACK routine numroc:

Fortran

na_rows = numroc(na, nblk, my_prow, 0, np_rows)

na_cols = numroc(na, nblk, my_pcol, 0, np_cols)

C/C++

int izero = 0;

na_rows = numroc_(&na, &nblk, &my_prow, &izero, &np_rows);

na_cols = numroc_(&na, &nblk, &my_pcol, &izero, &np_cols);

7. Set up a BLACS descriptor for the target matrix

Fortran

call descinit(descA, na, na, nblk, nblk, 0, 0, ictxt, na_rows, info)

if (info /= 0) then

print *, "Invalid blacs-distribution. Abort!"

stop 1

endif

C/C++

descinit_(descA, &na, &na, &nblk, &nblk, &izero, &izero, &ictxt,

&na_rows, &info);

if (info != 0) {

printf("Invalid blacs-distribution. Abort!\n");

exit(1);

}

For ELPA the following restrictions hold:

� block sizes in both directions must be identical (arguments 4 and 5)

� first row and column of the distributed matrix must be on p_row=0, p_col=0 (argu-
ments 6 and 7)

� the leading dimension of the local matrix must be equal to the number of local rows
(argument 9)

� if the eigenvectors are to be calculated, the desciptor for the eigenvector matrix must
be identical to the descriptor of the input matrix

69

D ELPA functions

In this Appendix, we list all ELPA math and auxillary functions and their arguments. This
Appendix is a copy of the man pages provided with every ELPA installation. They can be
invoked by a shell command from the ./man folder that is located in the elpa root directory, for
example:

git clone https://gitlab.mpcdf.mpg.de/elpa/elpa.git

cd elpa/man

ls # list all available man pages

man ./elpa_eigenvalues.3

for showing the man page for eigenvalues() routine.

70

elpa2_print_kernels(1) General Commands Manual elpa2_print_kernels(1)

NAME
elpa2_print_kernels - provides information, which ELPA2 kernels are available on this system.

SYNOPSIS
elpa2_print_kernels

Description
Provides information, which ELPA2 kernels are available on this system.
It is possible to configure ELPA2 such, that different compute intensive ’ELPA2 kernels’ can be chosen at
runtime. The service binary elpa2_print_kernels will query the library and tell whether ELPA2 has been
configured in this way, and if this is the case which kernels can be chosen at runtime. It will furthermore
detail whether ELPA has been configured with OpenMP support.

Options
none

Author
A. Marek, MPCDF

Reporting bugs
Report bugs to the ELPA mail elpa-library@mpcdf.mpg.de

SEE ALSO
elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_eigenvalues(3) elpa_eigenvectors(3)
elpa_cholesky(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3)
elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.1 elpa2_print_kernels

71

elpa_allocate(3) Library Functions Manual elpa_allocate(3)

NAME
elpa_allocate - allocates an instance of the ELPA library

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

elpa => elpa_allocate (error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
Returns an instance of the ELPA object

integer, optional :: error
A returned error code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

elpa_t handle = elpa_allocate(int *error);

With the definitions of the input and output variables:

elpa_t handle; // returns an handle to the allocated ELPA object

int *error; // a returned error code

DESCRIPTION
Allocate an ELPA object. The function elpa_init(3) must be called once BEFORE elpa_allocate can be
called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_set(3) elpa_setup(3) elpa_strerr(3) elpa_eigenvalues(3)
elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.2 elpa_allocate

72

elpa_autotune_deallocate(3) Library Functions Manual elpa_autotune_deallocate(3)

NAME
elpa_autotune_deallocate - deallocates an ELPA autotuning instance

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa class(elpa_autotune_t), pointer :: tune_state

call elpa%autotune_deallocate (tune_state, error)

With the definitions of the input and output variables:

type(elpa_autotune_t) :: tune_state
The ELPA autotuning object, created with elpa_autotune_setup(3)

integer, optional :: error
The returned error code

C INTERFACE
#include <elpa/elpa.h>
elpa_autotune_t autotune_handle;

void elpa_autotune_deallocate (elpa_autotune_t autotune_handle, int *error);

With the definitions of the input and output variables:

elpa_autotune_t autotune_handle;
The handle of an ELPA object, obtained before with elpa_autotune_setup(3)

int *error;
The returned error code

DESCRIPTION
Deallocates an ELPA autotuning instance. Prior to calling the elpa_autotune_deallocate method, an ELPA
autotuning object must have been created. See elpa_autotune_setup(3)

SEE ALSO
elpa_autotune_step(3) elpa_autotune_setup(3) elpa_autotune_deallocate(3)

ELPA Wed Mar 20 2024 1

D.3 elpa_autotune_deallocate

73

elpa_autotune_load_state(3) Library Functions Manual elpa_autotune_load_state(3)

NAME
elpa_autotune_load_state - loads a state of an ELPA autotuning object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa class(elpa_autotune_t), pointer :: autotune

call elpa%autotune_load_state (autotune, filename, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

class(elpa_autotune_t) :: autotune
An instance of the ELPA autotune object

character(*) :: filename
The filename to be used for loading the settings

integer, optional :: error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

void elpa_autotune_load_state(elpa_t handle, elpa_autotune_t autotune_handle, const char *filename,
int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

elpa_autotune_t handle;
The handle to the ELPA autotune object

const char *filename;
The filename to load the settings

int *error;
The error return code

DESCRIPTION
Loads a previously stored state of an autotune object. With the loaded, state the autotuning could be
resumed.

SEE ALSO
elpa_autotune_save_state(3)

ELPA Fri Feb 9 2024 1

D.4 elpa_autotune_load_state

74

elpa_autotune_print_state(3) Library Functions Manual elpa_autotune_print_state(3)

NAME
elpa_autotune_print_state - prints the current state of an ELPA autotuning object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa
class(elpa_autotune_t), pointer :: autotune

call elpa%autotune_print_state (autotune, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

class(elpa_autotune_t) :: autotune
An instance of the ELPA autotune object

integer, optional :: error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

void elpa_autotune_print_state(elpa_t handle, elpa_autotune_t autotune_handle, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

elpa_autotune_t handle;
The handle to the ELPA autotune object

int *error;
The error return code

DESCRIPTION
Prints the current state of an autotune object.

SEE ALSO
elpa_autotune_save_state(3) elpa_autotune_load_state(3)

ELPA Fri Feb 9 2024 1

D.5 elpa_autotune_print_state

75

elpa_autotune_save_state(3) Library Functions Manual elpa_autotune_save_state(3)

NAME
elpa_autotune_save_state - saves the current state of an ELPA autotuning object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa class(elpa_autotune_t), pointer :: autotune

call elpa%autotune_save_state (autotune, filename, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

class(elpa_autotune_t) :: autotune
An instance of the ELPA autotune object

character(*) :: filename
The filename to be used for storing the settings

integer, optional :: error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

void elpa_autotune_save_state(elpa_t handle, elpa_autotune_t autotune_handle, char *filename, int
*error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

elpa_autotune_t handle;
The handle to the ELPA autotune object

char *filename;
The filename to store the settings

int *error;
The error return code

DESCRIPTION
Saves the current state of an autotune object. The state can be restored with elpa_autotune_load_state(3)
and the autotuning could be resumed.

SEE ALSO
elpa_autotune_load_state(3)

ELPA Wed Aug 9 2023 1

D.6 elpa_autotune_save_state

76

elpa_autotune_set_best(3) Library Functions Manual elpa_autotune_set_best(3)

NAME
elpa_autotune_set_best - sets the tunable parameters to the up-to-now best solution
Before the autotuning options can be set, an autotuning step has to be done elpa_autotune_step(3)

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa
class(elpa_autotune_t), pointer :: tune_state

call elpa%autotune_set_best (tune_state)

With the definitions of the input and output variables:

type(elpa_autotune_t) :: tune_state
The ELPA autotuning object, created with elpa_autotune_setup(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

void elpa_autotune_set_best (elpa_t handle, elpa_autotune_t autotune_handle);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

elpa_autotune_t autotune_handle;
The handle of an ELPA object, obtained before with elpa_autotune_setup(3)

DESCRIPTION
Sets the up-to-now best options for ELPA tunable parameters. Prior to calling the elpa_autotune_set_best
method, an ELPA autotuning step must have been performed. See elpa_autotune_set_best(3)

SEE ALSO
elpa_autotune_step(3) elpa_autotune_setup(3) elpa_autotune_deallocate(3)

ELPA Wed Aug 9 2023 1

D.7 elpa_autotune_set_best

77

elpa_autotune_setup(3) Library Functions Manual elpa_autotune_setup(3)

NAME
elpa_autotune_setup - creates an instance for autotuning of the ELPA library

Before the autotuning object can be created, an instance of the ELPA library has to be setup, see e.g.
elpa_setup(3)

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa class(elpa_autotune_t), pointer :: tune_state

tune_state= elpa%autotune_setup (level, domain)

With the definitions of the input and output variables:

integer :: level
The level of the autotuning, at the moment ELPA_AUTOTUNE_FAST is supported

integer :: domain
The domain (real or complex) of the autotuning, can be either
ELPA_AUTOTUNE_DOMAIN_REAL or ELPA_AUTOTUNE_DOMAIN_COMPLEX

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

elpa_autotune_t autotune_handle = elpa_autotune_setup (elpa_t handle, int level, int domain);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

int level;
The level of the autotuning, at the moment "ELPA_AUTOTUNE_FAST" is supported

int domain;
The domain (real or complex) of the autotuning, can be either
"ELPA_AUTOTUNE_DOMAIN_REAL" and "ELPA_AUTOTUNE_DOMAIN_COMPLEX

elpa_autotune_t autotune_handle;
The created handle of the autotune object

DESCRIPTION
Creates an ELPA autotuning object. Prior to calling the autotune_setup, an ELPA object must have been
created. See elpa_setup(3)

SEE ALSO
elpa_autotune_step(3) elpa_autotune_set_best(3) elpa_autotune_deallocate(3)

ELPA Wed Aug 9 2023 1

D.8 elpa_autotune_setup

78

elpa_autotune_step(3) Library Functions Manual elpa_autotune_step(3)

NAME
elpa_autotune_step - does one ELPA autotuning step
Before the autotuning step can be done, an instance of the ELPA autotune object has to be created, see
elpa_autotune_setup(3)

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa
class(elpa_autotune_t), pointer :: tune_state

unfinished = elpa%autotune_step (tune_state)

With the definitions of the input and output variables:

type(elpa_autotune_t) :: tune_state
The ELPA autotuning object, created with elpa_autotune_setup(3)

logical :: unfinished
Logical, specifying whether autotuning has finished (.false.) or not (.true.)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;
elpa_autotune_t autotune_handle;

int unfinished = elpa_autotune_step (elpa_t handle, elpa_autotune_t autotune_handle);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

elpa_autotune_t autotune_handle;
The handle of the autotuning object, created with elpa_autotune_setup(3)

int unfinished;
Integer, specifying whether autotuning has finished (0) or not (1)

DESCRIPTION
Performs an ELPA autotuning step. Prior to calling the autotune_step, an ELPA autotune object must have
been created. See elpa_autotune_setup(3)

SEE ALSO
elpa_autotune_setup(3) elpa_autotune_set_best(3) elpa_autotune_deallocate(3)

ELPA Wed Aug 9 2023 1

D.9 elpa_autotune_step

79

elpa_cholesky(3) Library Functions Manual elpa_cholesky(3)

NAME
elpa_cholesky - does a Cholesky factorization of a real symmetric or complex hermitian matrix.

There are also variations of this routine that can accept not only host but also device pointers as
input/output. Names of these routines explicitly contain the corresponding datatypes:
elpa_cholesky_double, elpa_cholesky_float, elpa_cholesky_double_complex,
elpa_cholesky_float_complex.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%cholesky (a, error)

With the definitions of the input and output variables:

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a which should be decomposed. The dimensions of matrix a must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)". In case of a GPU build a can be a device pointer of type "type(c_ptr)"
to matrix a in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_cholesky(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a; // can also be a device pointer
The host/device matrix a which should be decomposed. The dimensions of the matrix must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of "double",
"float", "double complex", or "float complex".

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the Cholesky decomposition of a real symmetric or complex hermitian matrix. The functions
elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_cholesky can
be called.

ELPA Wed Aug 9 2023 1

D.10 elpa_cholesky

80

elpa_cholesky(3) Library Functions Manual elpa_cholesky(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_deallocate(3) Library Functions Manual elpa_deallocate(3)

NAME
elpa_deallocate - deallocates an instance of the ELPA library after usage

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa_deallocate (elpa, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
The pointer to the instance of the ELPA library that is to be deallocated

integer, optional :: error
The returned error code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_deallocate(elpa_t handle, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA instance which should be deallocated.

int *error;
The returned error code

DESCRIPTION
Deallocate an ELPA object. The functions elpa_init(3) and elpa_allocate(3) must have been called
BEFORE elpa_deallocate can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3)
elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)

ELPA Wed Aug 9 2023 1

D.11 elpa_deallocate

82

elpa_eigenvalues(3) Library Functions Manual elpa_eigenvalues(3)

NAME
elpa_eigenvalues - computes all eigenvalues of a real symmetric or complex hermitian matrix.

There are also variations of this routine that can accept not only host but also device pointers as
input/output. Names of these routines explicitly contain the corresponding datatypes:
elpa_eigenvalues_double, elpa_eigenvalues_float, elpa_eigenvalues_double_complex,
elpa_eigenvalues_float_complex.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvalues (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a
The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)". The matrix has to be symmetric or hermitian, this is not checked by the
routine.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev can be either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the
matrix. Note that complex hermitian matrices also have real-valued eigenvalues.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double", "float", "double complex", or "float complex". The matrix has to be symmetric or
hermitian, this is not checked by the routine.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float". Note that the eigenvalues of complex hermitian

ELPA Wed Aug 9 2023 1

D.12 elpa_eigenvalues

83

elpa_eigenvalues(3) Library Functions Manual elpa_eigenvalues(3)

matrices are also real.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues of a real symmetric or complex hermitian matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_eigenvalues can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvalues_double(3) Library Functions Manual elpa_eigenvalues_double(3)

NAME
elpa_eigenvalues_double - computes all eigenvalues of a real double-precision symmetric matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvalues_double (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix must be "real(kind=c_double)". The matrix has to be symmetric, this is not checked by
the routine. In case of a GPU build a can be a device pointer of type "type(c_ptr)" to a matrix a in
the device memory.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev must be "real(kind=c_double)". In case of a GPU build ev can be a device pointer of type
"type(c_ptr)" to the vector of eigenvalues in the device memory

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues_double(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The host/device matrix a for which the eigenvalues should be computed. The dimensions of the
matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must
be "double". The matrix has to be symmetric, this is not checked by the routine. In case of a GPU
build a can be a device pointer to a matrix a in the device memory.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype must be "double". In case of a GPU build ev can be a device pointer to the vectors of
eigenvalues in the device memory.

ELPA Wed Aug 9 2023 1

D.13 elpa_eigenvalues_double

85

elpa_eigenvalues_double(3) Library Functions Manual elpa_eigenvalues_double(3)

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues of a double precision real symmetric matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_eigenvalues_double can
be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvalues_double_complex(3) Library Functions Manual elpa_eigenvalues_double_complex(3)

NAME
elpa_eigenvalues_double_complex - computes all eigenvalues of a complex double-precision hermitian
matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvalues_double_complex (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix must be "complex(kind=c_double_complex)". The matrix has to be hermitian, this is
not checked by the routine. In case of a GPU build a can be a device pointer of type "type(c_ptr)"
to matrix a in the device memory.

datatype :: ev
The host/device vector of eigenvalues ev stored in ascending order. The number of requested
eigenvalues must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype
of the vector ev must be "real(kind=c_double)". In case of a GPU build ev can be a device pointer
of type "type(c_ptr)" to the vector of eigenvalues in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues_double_complex(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The host/device matrix a for which the eigenvalues should be computed. The dimensions of the
matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must
be "double complex". The matrix has to be symmetric, this is not checked by the routine. In case
of a GPU build a can be a device pointer to matrix a in the device memory.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype must be "double". In case of a GPU build ev can be a device pointer to the vectors of
eigenvalues in the device memory.

ELPA Wed Aug 9 2023 1

D.14 elpa_eigenvalues_double_complex

87

elpa_eigenvalues_double_complex(3) Library Functions Manual elpa_eigenvalues_double_complex(3)

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues of a double precision complex hermitian matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_eigenvalues_double_complex can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvalues_float(3) Library Functions Manual elpa_eigenvalues_float(3)

NAME
elpa_eigenvalues_float - computes all eigenvalues of a real single-precision symmetric matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvalues_float (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix must be "real(kind=c_float)". The matrix has to be symmetric this is not checked by the
routine. In case of a GPU build a can be a device pointer of type "type(c_ptr)" to a matrix a in the
device memory.

datatype :: ev
The host/device vector ev where the eigenvalues will be stored in ascending order. The datatype
of the vector ev must be "real(kind=c_float)". In case of a GPU build ev can be a device pointer of
type "type(c_ptr)" to the vector of eigenvalues in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues_float(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The host/device matrix a for which the eigenvalues should be computed. The dimensions of the
matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must
be "float". The matrix has to be symmetric, this is not checked by the routine. In case of a GPU
build a can be a device pointer to a matrix a in the device memory.

datatype *ev;
The host/device storage for the computed eigenvalues. Eigenvalues will be stored in ascending
order. The datatype must be "float". In case of a GPU build ev can be a device pointer to the
vectors of eigenvalues in the device memory.

ELPA Wed Aug 9 2023 1

D.15 elpa_eigenvalues_float

89

elpa_eigenvalues_float(3) Library Functions Manual elpa_eigenvalues_float(3)

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues of a single-precision real symmetric matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_eigenvalues_float can be
called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvalues_float_complex(3) Library Functions Manual elpa_eigenvalues_float_complex(3)

NAME
elpa_eigenvalues_float_complex - computes all eigenvalues of a complex hermitian single-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvalues_float_complex (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix must be "complex(kind=c_float_complex)". The matrix has to be hermitian, this is not
checked by the routine. In case of a GPU build a can be a device pointer of type "type(c_ptr)" to
matrix a in the device memory.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev must be "real(kind=c_float)". In case of a GPU build ev can be a device pointer of type
"type(c_ptr)" to the vector of eigenvalues in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues_float_complex(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The host/device matrix a for which the eigenvalues should be computed. The dimensions of the
matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must
be "float complex". The matrix has to be symmetric, this is not checked by the routine. In case of
a GPU build a can be a device pointer to matrix a in the device memory.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype must be "float". In case of a GPU build ev can be a device pointer to the vectors of
eigenvalues in the device memory.

ELPA Wed Aug 9 2023 1

D.16 elpa_eigenvalues_float_complex

91

elpa_eigenvalues_float_complex(3) Library Functions Manual elpa_eigenvalues_float_complex(3)

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues of a single-precision complex hermitian matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_eigenvalues_float_complex can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvectors(3) Library Functions Manual elpa_eigenvectors(3)

NAME
elpa_eigenvectors - computes the eigenvalues and (part of) the eigenvector spectrum for a real symmetric
or complex hermitian matrix.

There are also variations of this routine that can accept not only host but also device pointers as
input/output. Names of these routines explicitly contain the corresponding datatypes:
elpa_eigenvectors_double, elpa_eigenvectors_float, elpa_eigenvectors_double_complex,
elpa_eigenvectors_float_complex.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvectors (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a
The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)". The matrix has to be symmetric or hermitian, this is not checked by the
routine.

datatype :: ev
The vector of eigenvalues ev stored in ascending order. The datatype of the vector ev can be
either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the matrix.
Note that complex hermitian matrices also have real-valued eigenvalues.

datatype :: q
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)".

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues(elpa_t handle, datatype *a, datatype *ev, datatype *q, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

ELPA Wed Aug 9 2023 1

D.17 elpa_eigenvectors

93

elpa_eigenvectors(3) Library Functions Manual elpa_eigenvectors(3)

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double", "float", "double complex", or "float complex". The matrix has to be symmetric or
hermitian, this is not checked by the routine.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float". Note that the eigenvalues of complex hermitian
matrices are also real.

datatype *q;
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double", "float", "double complex", or "float complex".

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a real symmetric or complex hermitian
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_eigenvectors can be called. In particular, the number of eigenvectors to be computed, "nev",
must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvectors_double(3) Library Functions Manual elpa_eigenvectors_double(3)

NAME
elpa_eigenvectors_double - computes all eigenvalues and (part of) the eigenvector spectrum for a real
symmetric matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvectors_double (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which all eigenvalues and (part of) eigenvectors should be computed.
The dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and
elpa_setup(3). The datatype of the matrix must be "real(kind=c_double)". The matrix has to be
symmetric, this is not checked by the routine. In case of a GPU build a can be a device pointer to
a matrix a in the device memory.

datatype :: ev
The host/device vector ev where the eigenvalues will be stored in ascending order. The datatype
of the vector ev must be "real(kind=c_double)". In case of a GPU build ev can be a device pointer
to the vectors of eigenvalues in the device memory.

datatype :: q
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
datatype of the matrix must be "real(kind=c_double)". In case of a GPU build q can be a device
pointer to the matrix q in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvectors_double(elpa_t handle, datatype *a, datatype *ev, datatype *q, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The host/device matrix a for which the eigenpairs should be computed. The dimensions of the
matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must
be "double". The matrix has to be symmetric, this is not checked by the routine. In case of a GPU
build a can be a device pointer to a matrix a in the device memory.

ELPA Wed Aug 9 2023 1

D.18 elpa_eigenvectors_double

95

elpa_eigenvectors_double(3) Library Functions Manual elpa_eigenvectors_double(3)

datatype *ev;
The host/device storage for the computed eigenvalues. Eigenvalues will be stored in ascending
order. The datatype must be "double". In case of a GPU build ev can be a device pointer to the
vectors of eigenvalues in the device memory.

datatype *q;
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
datatype must be one of "double". In case of a GPU build q can be a device pointer to a matrix q
in the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a real symmetric double precision
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_eigenvectors_double can be called. In particular, the number of eigenvectors to be
computed, "nev", must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvectors_double_complex(3) Library Functions Manual elpa_eigenvectors_double_complex(3)

NAME
elpa_eigenvectors_double_complex - computes all eigenvalues and (part of) the eigenvector spectrum for a
complex hermitian matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvectors_double_complex (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues and eigenvectors should be computed. The
dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3).
The datatype of the matrix must be "complex(kind=c_double_complex)". The matrix has to be
hermitian, this is not checked by the routine. In case of a GPU build a can be a device pointer to a
matrix a in the device memory.

datatype :: ev
The host/device vector ev where the eigenvalues will be stored in ascending order. The datatype
of the vector ev must be "real(kind=c_double)". In case of a GPU build ev can be a device pointer
to the vectors of eigenvalues in the device memory.

datatype :: q
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
datatype of the matrix must be "complex(kind=c_double_complex)". In case of a GPU build q
can be a device pointer to a matrix q in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvectors_double_complex(elpa_t handle, datatype *a, datatype *ev, datatype *q, int
*error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues and eigenvectors should be computed. The dimensions of
the matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype
must be "double complex". The matrix has to be hermitian, this is not checked by the routine. In
case of a GPU build a can be a device pointer to a matrix a in the device memory.

ELPA Wed Aug 9 2023 1

D.19 elpa_eigenvectors_double_complex

97

elpa_eigenvectors_double_complex(3) Library Functions Manual elpa_eigenvectors_double_complex(3)

datatype *ev;
The host/device storage for the computed eigenvalues. Eigenvalues will be stored in ascending
order. The datatype must be "double". In case of a GPU build ev can be a device pointer to the
vectors of eigenvalues in the device memory.

datatype *q;
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
datatype must be one of "double complex". In case of a GPU build q can be a device pointer to a
matrix q in the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a complex hermitian double precision
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_eigenvectors_double_complex can be called. In particular, the number of eigenvectors to
be computed, "nev", must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvectors_float(3) Library Functions Manual elpa_eigenvectors_float(3)

NAME
elpa_eigenvectors_float - computes all eigenvalues and (part of) the eigenvector spectrum for a real
symmetric single-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvectors_float (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues and (part of) eigenvectors should be computed.
The dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and
elpa_setup(3). The datatype of the matrix must be "real(kind=c_float)". The matrix has to be
symmetric, this is not checked by the routine. In case of a GPU build a can be a device pointer to
a matrix a in the device memory.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev must be "real(kind=c_float)". In case of a GPU build ev can be a device pointer to the vectors
of eigenvalues in the device memory.

datatype :: q
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix must
be "real(kind=c_float)". In case of a GPU build q can be a device pointer to a matrix q in the
device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvectors_float(elpa_t handle, datatype *a, datatype *ev, datatype *q, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "float".
The matrix has to be symmetric, this is not checked by the routine. In case of a GPU build a can
be a device pointer to a matrix a in the device memory.

ELPA Wed Aug 9 2023 1

D.20 elpa_eigenvectors_float

99

elpa_eigenvectors_float(3) Library Functions Manual elpa_eigenvectors_float(3)

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype must be "float". In case of a GPU build ev can be a device pointer to the vectors of
eigenvalues in the device memory.

datatype *q;
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be one of
"float". In case of a GPU build q can be a device pointer to a matrix q in the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a real symmetric single-precision
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_eigenvectors_float can be called. In particular, the number of eigenvectors to be computed,
"nev", must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_eigenvectors_float_complex(3) Library Functions Manual elpa_eigenvectors_float_complex(3)

NAME
elpa_eigenvectors_float_complex - computes all eigenvalues and (part of) the eigenvector spectrum for a
complex hermitian single-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%eigenvectors_float_complex (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a for which the eigenvalues should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix must be "complex(kind=c_float_complex)". The matrix has to be hermitian, this is not
checked by the routine. In case of a GPU build a can be a device pointer to a matrix a in the
device memory.

datatype :: ev
The host/device vector ev where the eigenvalues will be stored in ascending order. The datatype
of the vector ev must be "real(kind=c_float)". In case of a GPU build ev can be a device pointer to
the vectors of eigenvalues in the device memory.

datatype :: q
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3).
The datatype of the matrix must be "complex(kind=c_float_complex)". In case of a GPU build q
can be a device pointer to a matrix q in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvectors_float_complex(elpa_t handle, datatype *a, datatype *ev, datatype *q, int
*error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "float
complex". The matrix has to be hermitian, this is not checked by the routine. In case of a GPU
build a can be a device pointer to a matrix a in the device memory.

ELPA Wed Aug 9 2023 1

D.21 elpa_eigenvectors_float_complex

101

elpa_eigenvectors_float_complex(3) Library Functions Manual elpa_eigenvectors_float_complex(3)

datatype *ev;
The host/device storage for the computed eigenvalues. Eigenvalues will be stored in ascending
order. The datatype must be "float". In case of a GPU build ev can be a device pointer to the
vectors of eigenvalues in the device memory.

datatype *q;
The host/device storage space for the computed eigenvectors. The number of requested
eigenvectors must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The
datatype must be one of "float complex". In case of a GPU build q can be a device pointer to a
matrix q in the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a complex hermitian single-precision
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_eigenvectors_float_complex can be called. In particular, the number of eigenvectors to be
computed, "nev", must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_skew_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_generalized_eigenvalues(3) Library Functions Manual elpa_generalized_eigenvalues(3)

NAME
elpa_generalized_eigenvalues - computes all eigenvalues of a generalized eigenvalue problem,
A*X=lambda*B*X, for real symmetric or complex hermitian matrices

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%generalized_eigenvalues (a, b, ev, is_already_decomposed, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a
The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)".

datatype :: b
The matrix b defining the generalized eigenvalue problem. The dimensions and datatype of the
matrix b has to be the same as for matrix a.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev can be either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the
matrix. Note that complex hermitian matrices also have real-valued eigenvalues.

logical :: is_already_decomposed
Has to be set to .false. for the first call with a given b and .true. for each subsequent call with the
same b, since b then already contains decomposition and thus the decomposing step is skipped.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_generalized_eigenvalues(elpa_t handle, datatype *a, datatype *b, datatype *ev, int
is_already_decomposed, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double", "float", "double complex", or "float complex".

ELPA Wed Aug 9 2023 1

D.22 elpa_generalized_eigenvalues

103

elpa_generalized_eigenvalues(3) Library Functions Manual elpa_generalized_eigenvalues(3)

datatype * b;
The matrix b defining the generalized eigenvalue problem. The dimensions and the datatype of
the matrix b must be the same as matrix a.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float". Note that the eigenvalues of complex hermitian
matrices are also real.

int is_already_decomposed;
Has to be set to 0 for the first call with a given b and 1 for each subsequent call with the same b,
since b then already contains decomposition and thus the decomposing step is skipped.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the generalized eigenvalues and (part of) the eigenvector spectrum of a real symmetric or
complex hermitian matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3)
must be called BEFORE elpa_generalized_eigenvalues can be called. In particular, the number of
eigenvectors to be computed, "nev", must be set with elpa_set(3). Unlike in the case of ordinary eigenvalue
problem, the generalized problem calls some external ScaLAPACK routines. The user is responsible for
initialization of the BLACS context, which then has to be passed to elpa by elpa_set(3) BEFORE
elpa_generalized_eigenvalues can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3)
elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_generalized_eigenvectors(3) Library Functions Manual elpa_generalized_eigenvectors(3)

NAME
elpa_generalized_eigenvectors - computes all eigenvalues and (part of) eigenvectors of a generalized
eigenvalue problem, A*X=lambda*B*X, for real symmetric or complex hermitian matrices

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%generalized_eigenvectors (a, b, ev, q, is_already_decomposed, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a
The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)

datatype :: b
The matrix b defining the generalized eigenvalue problem. The dimensions and datatype of the
matrix b has to be the same as for matrix a.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev can be either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the
matrix. Note that complex hermitian matrices also have real-valued eigenvalues.

datatype :: q
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)".

logical :: is_already_decomposed
Has to be set to .false. for the first call with a given b and .true. for each subsequent call with the
same b, since b then already contains decomposition and thus the decomposing step is skipped.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_generalized_eigenvectors(elpa_t handle, datatype *a, datatype *b, datatype *ev, datatype *q,
int is_already_decomposed, int *error);

With the definitions of the input and output variables:

ELPA Wed Aug 9 2023 1

D.23 elpa_generalized_eigenvectors

105

elpa_generalized_eigenvectors(3) Library Functions Manual elpa_generalized_eigenvectors(3)

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which all eigenvalues and (part of) eigenvectors should be computed. The
dimensions of the matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3).
The datatype can be one of "double", "float", "double complex", or "float complex".

datatype * b;
The matrix b defining the generalized eigenvalue problem. The dimensions and the datatype of
the matrix b must be the same as matrix a.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float". Note that the eigenvalues of complex hermitian
matrices are also real.

datatype *q;
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double", "float", "double complex", or "float complex".

int is_already_decomposed;
Has to be set to 0 for the first call with a given b and 1 for each subsequent call with the same b,
since b then already contains decomposition and thus the decomposing step is skipped.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

DESCRIPTION
Computes the generalized eigenvalues and (part of) the eigenvector spectrum of a real symmetric or
complex hermitian matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3)
must be called BEFORE elpa_generalized_eigenvalues can be called. In particular, the number of
eigenvectors to be computed can be set with elpa_set(3). Unlike in the case of ordinary eigenvalue
problem, the generalized problem calls some external ScaLAPACK routines. The user is responsible for
initialization of the BLACS context, which then has to be passed to ELPA by elpa_set(3) BEFORE
elpa_generalized_eigenvalues can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3)
elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_get_communicators(3) Library Functions Manual elpa_get_communicators(3)

NAME
elpa_get_communicators - splits the global MPI communicator mpi_comm_global communicator into
rows and column communicators mpi_comm_rows and mpi_comm_cols

SYNOPSIS
FORTRAN INTERFACE

use elpa1

status = elpa_get_communicators (mpi_comm_global, my_prow, my_pcol, mpi_comm_rows,
mpi_comm_cols)

integer, intent(in) :: mpi_comm_global
Global communicator for the calculation

integer, intent(in) :: my_prow
Row coordinate of the calling process in the process grid

integer, intent(in) :: my_pcol
Column coordinate of the calling process in the process grid

integer, intent(out) :: mpi_comm_rows
Communicator for communication within rows of processes

integer, intent(out) :: mpi_comm_cols
Communicator for communication within columns of processes

integer :: status
Return value indicating success or failure of the underlying MPI_COMM_SPLIT function

C INTERFACE
#include "elpa_generated.h

status = elpa_get_communicators (int mpi_comm_world, int my_prow, int my_pcol, int
*mpi_comm_rows, int *mpi_comm_cols);

int mpi_comm_global;
Global communicator for the calculation

int my_prow;
Row coordinate of the calling process in the process grid

int my_pcol;
Column coordinate of the calling process in the process grid

int *mpi_comm_rows;
Pointer to the communicator for communication within rows of processes

int *mpi_comm_cols;
Pointer to the communicator for communication within columns of processes

int status;
Return value indicating success or failure of the underlying MPI_COMM_SPLIT function

DESCRIPTION
All ELPA routines need MPI communicators for communicating within rows or columns of processes.
These communicators are created from the mpi_comm_global communicator. It is assumed that the

ELPA Wed Mar 13 2024 1

D.24 elpa_get_communicators

107

elpa_get_communicators(3) Library Functions Manual elpa_get_communicators(3)

matrix used in ELPA is distributed with my_prow rows and my_pcol columns on the calling process. This
function has to be invoked by all involved processes before any other calls to ELPA routines.

SEE ALSO
elpa_get_communicators(3) elpa_solve_evp_real(3) elpa_solve_evp_complex(3)
elpa2_print_kernels(1)

ELPA Wed Mar 13 2024 2

elpa_hermitian_multiply(3) Library Functions Manual elpa_hermitian_multiply(3)

NAME
elpa_hermitian_multiply - performs a "hermitian" multiplication of matrices: C = A**T * B for real
matrices and C = A**H * B for complex matrices

There are also variations of this routine that can accept not only host but also device pointers as
input/output. Names of these routines explicitly contain the corresponding datatypes:
elpa_hermitian_multiply_double, elpa_hermitian_multiply_float,
elpa_hermitian_multiply_double_complex, elpa_hermitian_multiply_float_complex.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%hermitian_multiply (uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
c, nrows_c, ncols_c, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character*1 :: uplo_a
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or to anything else if A
is a full matrix.

character*1 :: uplo_c
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

integer :: ncb
The number of columns of the global matrices b and c.

datatype :: a
The matrix a. The dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and
elpa_setup(3). The datatype of the matrix can be one of "real(kind=c_double)",
"real(kind=c_float)", "complex(kind=c_double)", or "complex(kind=c_float)".

datatype :: b
The matrix b. The dimensions of the matrix are specified by the parameters nrows_b and ncols_b.
The datatype of the matrix can be one of "real(kind=c_double)", "real(kind=c_float)",
"complex(kind=c_double)", or "complex(kind=c_float)".

integer :: nrows_b
The number of rows of matrix b.

integer :: ncols_b
The number of columns of matrix b.

datatype :: c
The matrix c. The dimensions of the matrix are specified by the parameters nrows_c and ncols_c.
The datatype of the matrix can be one of "real(kind=c_double)", "real(kind=c_float)",
"complex(kind=c_double)", or "complex(kind=c_float)".

integer :: nrows_c
The number of rows of matrix c.

integer :: ncols_c
The number of columns of matrix c.

ELPA Fri Apr 5 2024 1

D.25 elpa_hermitian_multiply

109

elpa_hermitian_multiply(3) Library Functions Manual elpa_hermitian_multiply(3)

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_hermitian_multiply(elpa_t handle, char uplo_a, char uplo_c, int ncb, datatype *a, datatype
*b, int nrows_b, int ncols_b, datatype *c, int nrows_c, int ncols_c, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char uplo_a;
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or anything else if A is a
full matrix.

char uplo_c;
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

int ncb;
The number of columns of the global matrices b and c.

datatype *a;
The matrix a. The dimensions of matrix a must be set BEFORE with the methods elpa_set(3) and
elpa_setup(3). The datatype of the matrix can be one of "double", "float", "double complex", or
"float complex".

datatype *b;
The matrix b. The dimensions of the matrix are specified by the parameters nrows_b and ncols_b.
The datatype of the matrix can be one of "double", "float", "double complex", or "float complex".

int nrows_b;
The number of rows of matrix b.

int ncols_b;
The number of columns of matrix b.

datatype *c;
The matrix c. The dimensions of the matrix are specified by the parametersn rows_c and ncols_c.
The datatype of the matrix can be one of "double", "float", "double complex", or "float complex".

int nrows_c;
The number of rows of matrix c.

int ncols_c;
The number of columns of matrix c.

int *error;
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

DESCRIPTION
Performs a "hermitian" multiplication: C = A**T * B for real matrices and C=A**H * B for complex
matrices. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_hermitian_multiply can be called.

ELPA Fri Apr 5 2024 2

elpa_hermitian_multiply(3) Library Functions Manual elpa_hermitian_multiply(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_solve_tridiagonal(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Fri Apr 5 2024 3

elpa_hermitian_multiply_double(3) Library Functions Manual elpa_hermitian_multiply_double(3)

NAME
elpa_hermitian_multiply_double - performs a "hermitian" multiplication of real double-precision matrices:
C = A**T * B

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%hermitian_multiply_double (uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
c, nrows_c, ncols_c, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character*1 :: uplo_a
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or to anything else if A
is a full matrix.

character*1 :: uplo_c
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

integer :: ncb
The number of columns of the global matrices b and c.

datatype :: a
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype of the matrix must be "real(kind=c_double)". In
case of a GPU build a can be a device pointer to a matrix a in the device memory.

datatype :: b
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype of the matrix must be "real(kind=c_double)". In case of a GPU build
b can be a device pointer to a matrix b in the device memory.

integer :: nrows_b
The number of rows of matrix b.

integer :: ncols_b
The number of columns of matrix b.

datatype :: c
The host/device matrix c. The dimensions of the matrix are specified by the parameters nrows_c
and ncols_c. The datatype of the matrix must be "real(kind=c_double)". In case of a GPU build
c can be a device pointer to a matrix c in the device memory.

integer :: nrows_c
The number of rows of matrix c.

integer :: ncols_c
The number of columns of matrix c.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

ELPA Wed Aug 9 2023 1

D.26 elpa_hermitian_multiply_double

112

elpa_hermitian_multiply_double(3) Library Functions Manual elpa_hermitian_multiply_double(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_hermitian_multiply_double(elpa_t handle, char uplo_a, char uplo_c, int ncb, datatype *a,
datatype *b, int nrows_b, int ncols_b, datatype *c, int nrows_c, int ncols_c, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char uplo_a;
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or anything else if A is a
full matrix.

char uplo_c;
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

int ncb;
The number of columns of the global matrices b and c.

datatype *a;
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype must be "double". In case of a GPU build a can be
a device pointer to a matrix a in the device memory.

datatype *b;
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype must be "double". In case of a GPU build b can be a device pointer to
a matrix b in the device memory.

int nrows_b;
The number of rows of matrix b.

int ncols_b;
The number of columns of matrix b.

datatype *c;
The host/device matrix c. The dimensions of the matrix are specified by the parametersn rows_c
and ncols_c. The datatype must be "double". In case of a GPU build c can be a device pointer to
a matrix c in the device memory.

int nrows_c;
The number of rows of matrix c.

int ncols_c;
The number of columns of matrix c.

int *error;
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

DESCRIPTION
Performs a "hermitian" multiplication C=A**T * B for real double-precision matrices. The functions
elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_hermitian_multiply_double can be called.

ELPA Wed Aug 9 2023 2

elpa_hermitian_multiply_double(3) Library Functions Manual elpa_hermitian_multiply_double(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_solve_tridiagonal(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 3

elpa_hermitian_multiply_double_complex(3)Library Functions Manualelpa_hermitian_multiply_double_complex(3)

NAME
elpa_hermitian_multiply_double_complex - performs a "hermitian" multiplication of complex double-
precision matrices: C = A**H * B

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%hermitian_multiply_double_complex (uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
c, nrows_c, ncols_c, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character*1 :: uplo_a
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or to anything else if A
is a full matrix.

character*1 :: uplo_c
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

integer :: ncb
The number of columns of the global matrices b and c.

datatype :: a
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"complex(kind=c_double_complex)". In case of a GPU build a can be a device pointer to a matrix
a in the device memory.

datatype :: b
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype of the matrix must be "complex(kind=c_double_complex)". In case
of a GPU build b can be a device pointer to a matrix b in the device memory.

integer :: nrows_b
The number of rows of matrix b.

integer :: ncols_b
The number of columns of matrix b.

datatype :: c
The host/device matrix c. The dimensions of the matrix are specified by the parameters nrows_c
and ncols_c. The datatype of the matrix must be "complex(kind=c_double_complex)". In case
of a GPU build c can be a device pointer to a matrix c in the device memory.

integer :: nrows_c
The number of rows of matrix c.

integer :: ncols_c
The number of columns of matrix c.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

ELPA Wed Aug 9 2023 1

D.27 elpa_hermitian_multiply_double_complex

115

elpa_hermitian_multiply_double_complex(3)Library Functions Manualelpa_hermitian_multiply_double_complex(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_hermitian_multiply_double_complex(elpa_t handle, char uplo_a, char uplo_c, int ncb,
datatype *a, datatype *b, int nrows_b, int ncols_b, datatype *c, int nrows_c, int ncols_c, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char uplo_a;
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or anything else if A is a
full matrix.

char uplo_c;
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

int ncb;
The number of columns of the global matrices b and c.

datatype *a;
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype must be "double complex". In case of a GPU build
a can be a device pointer to a matrix a in the device memory.

datatype *b;
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype must be "double complex". In case of a GPU build b can be a device
pointer to a matrix b in the device memory.

int nrows_b;
The number of rows of matrix b.

int ncols_b;
The number of columns of matrix b.

datatype *c;
The host/device matrix c. The dimensions of the matrix are specified by the parametersn rows_c
and ncols_c. The datatype must be "double complex". In case of a GPU build c can be a device
pointer to a matrix c in the device memory.

int nrows_c;
The number of rows of matrix c.

int ncols_c;
The number of columns of matrix c.

int *error;
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

DESCRIPTION
Performs a "hermitian" multiplication C=A**H * B for complex double-precision matrices. The functions
elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_hermitian_multiply_double_complex can be called.

ELPA Wed Aug 9 2023 2

elpa_hermitian_multiply_double_complex(3)Library Functions Manualelpa_hermitian_multiply_double_complex(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_solve_tridiagonal(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 3

elpa_hermitian_multiply_float(3) Library Functions Manual elpa_hermitian_multiply_float(3)

NAME
elpa_hermitian_multiply_float - performs a "hermitian" multiplication of real single-precision matrices: C
= A**T * B

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%hermitian_multiply_float (uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
c, nrows_c, ncols_c, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character*1 :: uplo_a
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or to anything else if A
is a full matrix.

character*1 :: uplo_c
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

integer :: ncb
The number of columns of the global matrices b and c.

datatype :: a
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype of the matrix must be "real(kind=c_float)". In case
of a GPU build a can be a device pointer to a matrix a in the device memory.

datatype :: b
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype of the matrix must be "real(kind=c_float)". In case of a GPU build b
can be a device pointer to a matrix b in the device memory.

integer :: nrows_b
The number of rows of matrix b.

integer :: ncols_b
The number of columns of matrix b.

datatype :: c
The host/device matrix c. The dimensions of the matrix are specified by the parameters nrows_c
and ncols_c. The datatype of the matrix must be "real(kind=c_float)". In case of a GPU build c
can be a device pointer to a matrix c in the device memory.

integer :: nrows_c
The number of rows of matrix c.

integer :: ncols_c
The number of columns of matrix c.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

ELPA Wed Aug 9 2023 1

D.28 elpa_hermitian_multiply_float

118

elpa_hermitian_multiply_float(3) Library Functions Manual elpa_hermitian_multiply_float(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_hermitian_multiply_float(elpa_t handle, char uplo_a, char uplo_c, int ncb, datatype *a,
datatype *b, int nrows_b, int ncols_b, datatype *c, int nrows_c, int ncols_c, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char uplo_a;
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or anything else if A is a
full matrix.

char uplo_c;
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

int ncb;
The number of columns of the global matrices b and c.

datatype *a;
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype must be "float". In case of a GPU build a can be a
device pointer to a matrix a in the device memory.

datatype *b;
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype must be "float". In case of a GPU build b can be a device pointer to a
matrix b in the device memory.

int nrows_b;
The number of rows of matrix b.

int ncols_b;
The number of columns of matrix b.

datatype *c;
The host/device matrix c. The dimensions of the matrix are specified by the parametersn rows_c
and ncols_c. The datatype must be "float". In case of a GPU build c can be a device pointer to a
matrix c in the device memory.

int nrows_c;
The number of rows of matrix c.

int ncols_c;
The number of columns of matrix c.

int *error;
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

DESCRIPTION
Performs a "hermitian" multiplication C=A**T * B for real single-precision matrices. The functions
elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_hermitian_multiply_float can be called.

ELPA Wed Aug 9 2023 2

elpa_hermitian_multiply_float(3) Library Functions Manual elpa_hermitian_multiply_float(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_solve_tridiagonal(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 3

elpa_hermitian_multiply_float_complex(3) Library Functions Manual elpa_hermitian_multiply_float_complex(3)

NAME
elpa_hermitian_multiply_float_complex - performs a "hermitian" multiplication of complex single-
precision matrices: C = A**H * B

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%hermitian_multiply_float_complex (uplo_a, uplo_c, ncb, a, b, nrows_b, ncols_b, &
c, nrows_c, ncols_c, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character*1 :: uplo_a
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or to anything else if A
is a full matrix.

character*1 :: uplo_c
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

integer :: ncb
The number of columns of the global matrices b and c.

datatype :: a
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"complex(kind=c_float_complex)". In case of a GPU build a can be a device pointer to a matrix a
in the device memory.

datatype :: b
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype of the matrix must be "complex(kind=c_float_complex)". In case of a
GPU build b can be a device pointer to a matrix b in the device memory.

integer :: nrows_b
The number of rows of matrix b.

integer :: ncols_b
The number of columns of matrix b.

datatype :: c
The host/device matrix c. The dimensions of the matrix are specified by the parameters nrows_c
and ncols_c. The datatype of the matrix must be "complex(kind=c_float_complex)". In case of a
GPU build c can be a device pointer to a matrix c in the device memory.

integer :: nrows_c
The number of rows of matrix c.

integer :: ncols_c
The number of columns of matrix c.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

ELPA Wed Aug 9 2023 1

D.29 elpa_hermitian_multiply_float_complex

121

elpa_hermitian_multiply_float_complex(3) Library Functions Manual elpa_hermitian_multiply_float_complex(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_hermitian_multiply_float_complex(elpa_t handle, char uplo_a, char uplo_c, int ncb,
datatype *a, datatype *b, int nrows_b, int ncols_b, datatype *c, int nrows_c, int ncols_c, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char uplo_a;
Should be set to ’U’ if A is upper triangular, to ’L’ if A is lower triangular or anything else if A is a
full matrix.

char uplo_c;
Should be set to ’U’ if only the upper diagonal part of C is needed, to ’L’ if only the upper
diagonal part of C is needed, or to anything else if the full matrix C is needed.

int ncb;
The number of columns of the global matrices b and c.

datatype *a;
The host/device matrix a. The dimensions of matrix a must be set BEFORE with the methods
elpa_set(3) and elpa_setup(3). The datatype must be "float complex". In case of a GPU build a
can be a device pointer to a matrix a in the device memory.

datatype *b;
The host/device matrix b. The dimensions of the matrix are specified by the parameters nrows_b
and ncols_b. The datatype must be "float complex". In case of a GPU build b can be a device
pointer to a matrix b in the device memory.

int nrows_b;
The number of rows of matrix b.

int ncols_b;
The number of columns of matrix b.

datatype *c;
The host/device matrix c. The dimensions of the matrix are specified by the parametersn rows_c
and ncols_c. The datatype must be "float complex". In case of a GPU build c can be a device
pointer to a matrix c in the device memory.

int nrows_c;
The number of rows of matrix c.

int ncols_c;
The number of columns of matrix c.

int *error;
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

DESCRIPTION
Performs a "hermitian" multiplication C=A**H * B for complex single-precision matrices. The functions
elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE
elpa_hermitian_multiply_float_complex can be called.

ELPA Wed Aug 9 2023 2

elpa_hermitian_multiply_float_complex(3) Library Functions Manual elpa_hermitian_multiply_float_complex(3)

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_solve_tridiagonal(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 3

elpa_init(3) Library Functions Manual elpa_init(3)

NAME
elpa_init - initializes the ELPA library

SYNOPSIS
FORTRAN INTERFACE

use elpa

error = elpa_init (api_version)

With the definitions of the input and output variables:

integer, intent(in) :: api_version
The api version that you want to initialize, currently the version is 20171201

integer :: error
The return code. If the function returns without an error, the error code will be ELPA_OK.

C INTERFACE
#include <elpa/elpa.h>

int error = elpa_init (int api_version);

With the definitions of the input and output variables:

int api_version;
The api version that you want to initialize currently the version is 20171201

int error;
The return code. If the function returns without an error, the error code will be ELPA_OK.

DESCRIPTION
Initializes the ELPA library for usage. The return code should be ELPA_OK. The return code can be
queried with the elpa_strerr(3) function.

SEE ALSO
elpa2_print_kernels(1) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3) elpa_eigenvalues(3)
elpa_eigenvectors(3) elpa_choleksy(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.30 elpa_init

124

elpa_invert_triangular(3) Library Functions Manual elpa_invert_triangular(3)

NAME
elpa_invert_triangular - inverts an upper triangular matrix.

There are also variations of this routine that can accept not only host but also device pointers as
input/output. Names of these routines explicitly contain the corresponding datatypes:
elpa_invert_triangular_double, elpa_invert_triangular_float, elpa_invert_triangular_double_complex,
elpa_invert_triangular_float_complex.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%invert_triangular (a, error)

With the definitions of the input and output variables:

datatype :: a
The matrix a that should be inverted. The dimensions of matrix a must be set BEFORE with the
methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be one of
"real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or
"complex(kind=c_float)".

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_invert_triangular(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix that should be inverted. The dimensions of the matrix must be set BEFORE with the
methods elpa_set(3) and elpa_setup(3). The datatype can be one of "double", "float", "double
complex", or "float complex".

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Inverts an upper triangular real or complex matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_invert_triangular can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_choleksy(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.31 elpa_invert_triangular

125

elpa_invert_triangular_double(3) Library Functions Manual elpa_invert_triangular_double(3)

NAME
elpa_invert_triangular - inverts an upper triangular real double-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%invert_triangular_double (a, error)

With the definitions of the input and output variables:

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a that should be inverted. The dimensions of matrix a must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"real(kind=c_double)". In case of a GPU build a can be a device pointer of type "type(c_ptr)" to
matrix a in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_invert_triangular_double(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a; // can also be a device pointer
The host/device matrix that should be inverted. The dimensions of the matrix must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "double". In
case of a GPU build a can be a device pointer of type "type(c_ptr)" to matrix a in the device
memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Inverts an upper triangular real double-precision matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_invert_triangular_double can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_choleksy(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.32 elpa_invert_triangular_double

126

elpa_invert_triangular_double_complex(3) Library Functions Manual elpa_invert_triangular_double_complex(3)

NAME
elpa_invert_triangular - inverts an upper triangular complex double-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%invert_triangular_double_complex (a, error)

With the definitions of the input and output variables:

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a that should be inverted. The dimensions of matrix a must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"complex(kind=c_double)". In case of a GPU build a can be a device pointer of type "type(c_ptr)"
to matrix a in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_invert_triangular_double_complex(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a; // can also be a device pointer
The host/device matrix that should be inverted. The dimensions of the matrix must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "double
complex". In case of a GPU build a can be a device pointer of type "type(c_ptr)" to matrix a in
the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Inverts an upper triangular complex double-precision matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_invert_triangular_double_complex can be
called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_choleksy(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.33 elpa_invert_triangular_double_complex

127

elpa_invert_triangular_float(3) Library Functions Manual elpa_invert_triangular_float(3)

NAME
elpa_invert_triangular - inverts an upper triangular real single-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%invert_triangular_float (a, error)

With the definitions of the input and output variables:

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a that should be inverted. The dimensions of matrix a must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"real(kind=c_float)". In case of a GPU build a can be a device pointer of type "type(c_ptr)" to
matrix a in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_invert_triangular_float(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a; // can also be a device pointer
The host/device matrix that should be inverted. The dimensions of the matrix must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "float". In case
of a GPU build a can be a device pointer of type "type(c_ptr)" to matrix a in the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Inverts an upper triangular real single-precision matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_invert_triangular_float can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_choleksy(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.34 elpa_invert_triangular_float

128

elpa_invert_triangular_float_complex(3) Library Functions Manual elpa_invert_triangular_float_complex(3)

NAME
elpa_invert_triangular - inverts an upper triangular complex single-precision matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%invert_triangular_float_complex (a, error)

With the definitions of the input and output variables:

datatype :: a ! can also be a device pointer of type(c_ptr)
The host/device matrix a that should be inverted. The dimensions of matrix a must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix must be
"complex(kind=c_float)". In case of a GPU build a can be a device pointer of type "type(c_ptr)"
to matrix a in the device memory.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_invert_triangular_float_complex(elpa_t handle, datatype *a, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a; // can also be a device pointer
The host/device matrix that should be inverted. The dimensions of the matrix must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype must be "float
complex". In case of a GPU build a can be a device pointer of type "type(c_ptr)" to matrix a in
the device memory.

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Inverts an upper triangular complex single-precision matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_invert_triangular_float_complex can be
called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_eigenvectors(3) elpa_choleksy(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.35 elpa_invert_triangular_float_complex

129

elpa_load_settings(3) Library Functions Manual elpa_load_settings(3)

NAME
elpa_load_settings - loads the setting of an elpa object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%load_settings (filename, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

character(*) :: filename
The file from where to load the settings

integer, optional :: error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_load_settings(elpa_t handle, const char *filename, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

const char *filename;
The filename to load the settings

int *error;
The error return code

DESCRIPTION
Loads all the settings of an previously stored ELPA object from a file specified via the filename parameter.

SEE ALSO
elpa_store_setting(3)

ELPA Wed Aug 9 2023 1

D.36 elpa_load_settings

130

elpa_print_settings(3) Library Functions Manual elpa_print_settings(3)

NAME
elpa_print_settings - prints the setting of an elpa object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%print_settings (error)

With the definitions of the input and output variables:

class(elpa_t) elpa
An instance of the ELPA object

integer, optional error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_print_settings(elpa_t handle, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

int *error;
The error return code

DESCRIPTION
Prints all the settings of an ELPA object. The settings can be stored, or loaded with elpa_store_settings.3
or elpa_load_settings.3

SEE ALSO
elpa_store_setting(3) elpa_load_settings.(3)

ELPA Fri Feb 9 2024 1

D.37 elpa_print_settings

131

elpa_print_times(3) Library Functions Manual elpa_print_times(3)

NAME
elpa_print_times - prints the timings of individual ELPA solution steps.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%print_times (name)

With the definitions of the input and output variables:

class(elpa_t) elpa
An instance of the ELPA object

character(*) :: name
The name of the ELPA procedure for which the timings should be printed.

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_print_times(elpa_t handle, char *name);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char *name;
The name of the ELPA procedure for which the timings should be printed.

DESCRIPTION
Prints the timings of individual ELPA solution steps. Can be invoked after the calls to elpa_timer_start
and elpa_timer_stop with the same name argument. In order timings were printed, the timings parameter
should be set to 1 by elpa_set.

SEE ALSO
elpa_timer_start(3) elpa_timer_stop(3)

ELPA Fri Oct 13 2023 1

D.38 elpa_print_times

132

elpa_set(3) Library Functions Manual elpa_set(3)

NAME
elpa_set - set parameter or tunables for the ELPA library

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%set (character(*) name, datatype value, integer error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

character(*) :: name
the name of the option to be set

datatype :: value
the value which should be assigned to the option name. The datatype can be integer or
real(kind=c_double).

integer, optional :: error
The returned error code. On success it is ELPA_OK, otherwise an error. he error code can be
queried with elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_set (elpa_t handle, const char *name, datatype value, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

const char *name;
The name of the option to be set.

datatype value;
The value which should be assigned to the option name. The datatype can be either int or
double.

DESCRIPTION
The elpa_set function is used to set mandatory parameters and runtime options of the ELPA library. It
returns an error code which can be queried with elpa_strerr(3).

Mandatory parameters:

Mandatory parameters of an ELPA instance have to be set BEFORE the ELPA instance is set up with the
function elpa_setup(3).

At the moment the following mandatory parameters are supported:

ELPA Wed Aug 9 2023 1

D.39 elpa_set

133

elpa_set(3) Library Functions Manual elpa_set(3)

"na": integer parameter. The global matrix has size is (na * na)

"nev": integer parameter. The number of eigenvectors to be computed in a call to elpa_eigenvectors(3).
Must satisfy 1 <= nev <= na.

"local_nrows":
integer parameter. Number of matrix rows stored on this MPI process.

"local_ncols":
integer parameter. Number of matrix columns stored on this MPI process.

"process_row":
integer parameter. Process row number in the 2D domain decomposition.

"process_col":
integer parameter. Process column number in the 2D domain decomposition.

"mpi_comm_parent":
integer parameter. The parent MPI communicator which includes all MPI process which are used
in the 2D domain decomposition.

"bandwidth":
integer parameter. Some ELPA computational steps can be accelerated if the input matrix is
already in banded form. If set, ELPA assumes that the matrix has the provided bandwidth.

"BLACS_context":
integer parameter. The generalized eigenvalue solver elpa_generalized_eigenvectors(3) uses
internal calls to some of the ScaLAPACK routines. Thus before calling it, the user has to provide
properly initialized BLACS context.

"timings":
integer parameter. Choose whether time measurements should be done in the ELPA routines (1) or
not (0).

Runtime options:

Runtime options of an ELPA option can be set at any time.

At the moment the following runtime options are supported:

"solver":
Choose which solver should be used in the compute steps elpa_eigenvalues(3) or
elpa_eigenvectors(3). At the moment allowed option are "ELPA_SOLVER_1STAGE" or
"ELPA_SOLVER_2STAGE".

"real_kernel":
Choose which real kernel should be used in the elpa_eigenvalues(3) or elpa_eigenvectors(3)
compute steps, if solver is set to "ELPA_SOLVER_2STAGE". The available kernels can be
queried with elpa2_print_kernels(1).

"complex_kernel":
Choose which complex kernel should be used in the elpa_eigenvalues(3) or elpa_eigenvectors(3)
compute steps, if solver is set to "ELPA_SOLVER_2STAGE". The available kernels can be
queried with elpa2_print_kernels(1).

"qr": Choose whether a QR decomposition should be used for the real case computations in
elpa_eigenvalues(3) or elpa_eigenvectors(3) computational steps, if solver was set to
"ELPA_SOLVER_2STAGE".

"gpu": Choose whether accelerated GPU calculations should be used. Only available if ELPA has been
build with GPU support.

ELPA Wed Aug 9 2023 2

elpa_set(3) Library Functions Manual elpa_set(3)

"debug":
Choose whether, in case of an error, more debug information should be provided.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_setup(3) elpa_strerr(3) elpa_eigenvalues(3)
elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_deallocate(3) elpa_uninit(3)

ELPA Wed Aug 9 2023 3

elpa_setup(3) Library Functions Manual elpa_setup(3)

NAME
elpa_setup - setup an instance of the ELPA library

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

status = elpa%setup()

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

integer :: status
The returned error code. Should normally be ELPA_OK. Can be queried with elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

int status = elpa_setup (elpa_t handle);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

int status;
The returned error code. Should normally be ELPA_OK. Can be queried with elpa_strerr(3)

DESCRIPTION
Finalizes setting of the mandatory parameters and setups an ELPA object. Prior to calling the setup, the
functions elpa_init(3), elpa_allocate(3) must have been called and the mandatory parameters must have
been set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_strerr(3) elpa_eigenvalues(3)
elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_deallocate(3) elpa_uninit(3)

ELPA Wed Mar 13 2024 1

D.40 elpa_setup

136

elpa_setup_gpu(3) Library Functions Manual elpa_setup_gpu(3)

NAME
elpa_setup_gpu - finalize the setup of GPU in ELPA

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

status = elpa%setup_gpu()

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

integer :: status
The returned error code. Should normally be ELPA_OK. Can be queried with elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

int status = elpa_setup_gpu (elpa_t handle);

With the definitions of the input and output variables:

elpa_t handle;
The handle of an ELPA object, obtained before with elpa_allocate(3)

int status;
The returned error code. Should normally be ELPA_OK. Can be queried with elpa_strerr(3)

DESCRIPTION
Finalizes the setup of GPU runtime options in ELPA. elpa_setup_gpu has to be called after the runtime
option for GPU usage has been set with elpa_set(3), e.g. by ’call elpaInstance%set("nvidia-gpu", 1, status)’
in Fortran or ’elpa_set(handle, "nvidia-gpu", 1, &status)’ in C.
elpa_setup_gpu will check if the GPU is available and if the GPU is supported by the ELPA library. If

the GPU is not available or not supported, the function will return an error code. If the GPU is available
and supported, the function will finalize the setup of the GPU and return ELPA_OK.

SEE ALSO
elpa_set(3) elpa_strerr(3) elpa_setup(3)

ELPA Wed Mar 13 2024 1

D.41 elpa_setup_gpu

137

elpa_skew_eigenvalues(3) Library Functions Manual elpa_skew_eigenvalues(3)

NAME
elpa_skew_eigenvalues - computes all eigenvalues of a real skew-symmetric matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%skew_eigenvalues (a, ev, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: a
The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of the matrix can be
one of "real(kind=c_double)" or "real(kind=c_float)". The matrix has to be skew-symmetric, this
is not checked by the routine.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev can be either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the
matrix.

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3).

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_skew_eigenvalues(elpa_t handle, datatype *a, datatype *ev, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must
be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one of
"double" or "float". The matrix has to be skew-symmetric, this is not checked by the routine.

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float".

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

ELPA Wed Aug 9 2023 1

D.42 elpa_skew_eigenvalues

138

elpa_skew_eigenvalues(3) Library Functions Manual elpa_skew_eigenvalues(3)

DESCRIPTION
Computes the eigenvalues of a real skew-symmetric matrix. The functions elpa_init(3), elpa_allocate(3),
elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_skew_eigenvalues can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvectors(3) elpa_skew_eigenvectors(3) elpa_eigenvalues(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_eigenvalues(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_skew_eigenvectors(3) Library Functions Manual elpa_skew_eigenvectors(3)

NAME
elpa_skew_eigenvectors - computes the eigenvalues and (part of) the eigenvector spectrum for a real skew-
symmetric matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%skew_eigenvectors (a, ev, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

datatype :: a
The matrix a for which the eigenvalues and eigenvectors should be computed. The dimensions of
matrix a must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype of
the matrix can be one of "real(kind=c_double)" or "real(kind=c_float)". The matrix has to be
skew-symmetric, this is not checked by the routine.

datatype :: ev
The vector ev where the eigenvalues will be stored in ascending order. The datatype of the vector
ev can be either "real(kind=c_double)" or "real(kind=c_float)", depending of the datatype of the
matrix.

datatype :: q
The storage space for the computed eigenvectors. The number of requested eigenpairs must be set
BEFORE with the methods elpa_set(3) and elpa_setup(3). The number of requested eigenvectors
must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can be one
of "complex(kind=c_double)" or "complex(kind=c_float)". Note, that for a skew-symmetric
matrix the eigenvectors are complex. The routine returns separately the real and imaginary parts
of the complex eigenvectors. Thus, the storage space has to be of dimension q(#number_of_rows,
2*#number_of_columns).

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function fB elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_eigenvalues(elpa_t handle, datatype *a, datatype *ev, datatype *q, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *a;
The matrix a for which the eigenvalues and eigenvectors should be computed. The dimensions of
the matrix must be set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype
can be "double" or "float". The matrix has to be symmetric or hermitian, this is not checked by the
routine.

ELPA Wed Aug 9 2023 1

D.43 elpa_skew_eigenvectors

140

elpa_skew_eigenvectors(3) Library Functions Manual elpa_skew_eigenvectors(3)

datatype *ev;
The storage for the computed eigenvalues. Eigenvalues will be stored in ascending order. The
datatype can be either "double" or "float".

datatype *q;
The storage space for the computed eigenvectors. The number of requested eigenvectors must be
set BEFORE with the methods elpa_set(3) and elpa_setup(3). The datatype can "double
complex" or "float complex". Note, that for a skew-symmetric matrix the eigenvectors are
complex. The routine returns separately the real and imaginary parts of the complex eigenvectors.
Thus, the storage space has to be of dimension q(#number_of_rows, 2*#number_of_columns).

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3).

DESCRIPTION
Computes the eigenvalues and (part of) the eigenvector spectrum of a real symmetric or complex hermitian
matrix. The functions elpa_init(3), elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called
BEFORE elpa_skew_eigenvectors can be called. In particular, the number of the requested eigenpairs,
"nev", must be set with elpa_set(3).

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_skew_eigenvalues(3) elpa_eigenvectors(3) elpa_cholesky(3)
elpa_invert_triangular(3) elpa_solve_tridiagonal(3) elpa_hermitian_multiply(3) elpa_uninit(3)
elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_solve_tridiagonal(3) Library Functions Manual elpa_solve_tridiagonal(3)

NAME
elpa_solve_tridiagonal - computes the eigenvalue problem for real symmetric tridiagonal matrix

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%solve_tridiagonal (d, e, q, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object.

datatype :: d
The diagonal elements of a matrix whose dimensions have been defined in elpa_setup(3). The
dimensions of the matrix must be set BEFORE with elpa_setup(3). On exit the eigenvalues are
stored in d. The datatype of the diagonal elements can either be "real(kind=c_double)" or
"real(kind=c_float)".

datatype :: e
The offdiagonal elements of the matrix. The datatype of the diagonal elements can either be
"real(kind=c_double)" or "real(kind=c_float)".

datatype :: q
The storage space for the computed eigenvectors. The datatype of the matrix can be either
"real(kind=c_double)" or "real(kind=c_float)".

integer, optional :: error
The return error code of the function. Should be "ELPA_OK". The error code can be queried with
the function elpa_strerr(3)

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_solve_tridiagonal(elpa_t handle, datatype *d, datatype *e, datatype *q, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

datatype *d;
The diagonal elements of the matrix. The dimensions of the matrix must be set BEFORE with
elpa_setup(3). On exit the eigenvalues are stored in d. The datatype can be one of "double" or
"float".

datatype *e;
The offdiagonal elements of the matrix. The datatype can be one of "double" or "float".

datatype *q;
The storage space for the computed eigenvectors. The datatype can be one of "double" or "float".

int *error;
The error code of the function. Should be "ELPA_OK". The error codes can be queried with
elpa_strerr(3)

ELPA Wed Aug 9 2023 1

D.44 elpa_solve_tridiagonal

142

elpa_solve_tridiagonal(3) Library Functions Manual elpa_solve_tridiagonal(3)

DESCRIPTION
Computes the eigenvalue problem of a real symmetric tridiagonal matrix. The functions elpa_init(3),
elpa_allocate(3), elpa_set(3), and elpa_setup(3) must be called BEFORE elpa_solve_tridiagonal can be
called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_setup(3) elpa_strerr(3)
elpa_eigenvalues(3) elpa_cholesky(3) elpa_invert_triangular(3) elpa_hermitian_multiply(3)
elpa_uninit(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 2

elpa_store_settings(3) Library Functions Manual elpa_store_settings(3)

NAME
elpa_store_settings - stores the setting of an elpa object

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%store_settings (filename, error)

With the definitions of the input and output variables:

class(elpa_t) :: elpa
An instance of the ELPA object

character(*) :: filename
The filename to be used for storing the settings

integer, optional :: error
An error return code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_store_settings(elpa_t handle, const char *filename, int *error);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

const char *filename;
The filename to store the settings

int *error;
The error return code

DESCRIPTION
Stores all the settings of an ELPA object in a human readable form to a file specified via the filename
parameter. The settings can later be restored with the elpa_load_settings(3) method.

SEE ALSO
elpa_load_setting(3)

ELPA Fri Feb 9 2024 1

D.45 elpa_store_settings

144

elpa_print_times(3) Library Functions Manual elpa_print_times(3)

NAME
elpa_timer_start - start the timer for the individual ELPA solution steps.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%timer_start (name)

With the definitions of the input and output variables:

class(elpa_t) elpa
An instance of the ELPA object

character(*) :: name
The name of the ELPA procedure for which the timings should be recorded.

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_timer_start(elpa_t handle, char *name);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char *name;
The name of the ELPA procedure for which the timings should be recorded.

DESCRIPTION
Starts the timer for the individual ELPA solution steps.

SEE ALSO
elpa_timer_stop(3) elpa_print_times(3)

ELPA Fri Oct 13 2023 1

D.46 elpa_timer_start

145

elpa_print_times(3) Library Functions Manual elpa_print_times(3)

NAME
elpa_timer_stop - stop the timer for the individual ELPA solution steps.

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa%timer_start (name)

With the definitions of the input and output variables:

class(elpa_t) elpa
An instance of the ELPA object

character(*) :: name
The name of the ELPA procedure for which the timings should be recorded.

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_timer_start(elpa_t handle, char *name);

With the definitions of the input and output variables:

elpa_t handle;
The handle to the ELPA object

char *name;
The name of the ELPA procedure for which the timings should be recorded.

DESCRIPTION
Stops the timer for the individual ELPA solution steps.

SEE ALSO
elpa_timer_start(3) elpa_print_times(3)

ELPA Fri Oct 13 2023 1

D.47 elpa_timer_stop

146

elpa_uninit(3) Library Functions Manual elpa_uninit(3)

NAME
elpa_uninit - uninitializes the ELPA library

SYNOPSIS
FORTRAN INTERFACE

use elpa
class(elpa_t), pointer :: elpa

call elpa_uninit (error)

With the definitions of the input and output variables:

integer, optional :: error
The error code

C INTERFACE
#include <elpa/elpa.h>
elpa_t handle;

void elpa_uninit (int *error);

With the definitions of the input and output variables:

int error*;
The error code

DESCRIPTION
Uninitializes the ELPA library after usage. The function elpa_init(3) must have been called BEFORE
elpa_uninit can be called.

SEE ALSO
elpa2_print_kernels(1) elpa_init(3) elpa_allocate(3) elpa_set(3) elpa_strerr(3) elpa_eigenvalues(3)
elpa_eigenvectors(3) elpa_cholesky(3) elpa_invert_triangular(3) elpa_solve_tridiagonal(3)
elpa_hermitian_multiply(3) elpa_setup(3) elpa_deallocate(3)

ELPA Wed Aug 9 2023 1

D.48 elpa_uninit

147

	About ELPA
	How to obtain ELPA
	Terms of use
	Current release

	Quick start guide
	Sequence of steps to use ELPA
	Fortran example
	C/C++ example

	Installation guide
	Dependencies
	Configuration
	Compiler and linker variables for configure
	Compiler flags for vectorization and optimization
	Configure options
	configure examples

	Building
	Complete installation example
	Troubleshooting
	Common configure problems
	Common make problems
	Common make check problems

	Compiling and linking against ELPA
	Linking with pkg-config
	Linking without pkg-config

	Calling ELPA
	API version
	Key-Value pairs
	Mandatory parameters
	Runtime options

	Math routines provided by ELPA
	Standard eigenvalue problem
	Generalized eigenvalue problem
	Auxillary routines

	Using ELPA without MPI
	Sequential mode
	OpenMP mode

	Using ELPA with MPI
	Plain MPI mode
	Hybrid MPI+OpenMP mode

	Using GPU acceleration
	Using GPU streams
	Using GPU solver libraries
	Using NCCL/RCCL communication libraries
	Using several MPI tasks per GPU
	Other tips for using ELPA-GPU

	Using ELPA from Python

	Best practices
	Autotuning for better performance
	Choosing the optimal BLACS grid
	Optimal BLACS grid dimensions
	Optimal BLACS layout
	ELPA test programs to find the best BLACS settings

	Track ELPA timings in your application

	Troubleshooting
	Debugging information
	Reporting bugs and issues

	Contributions guide
	Expert configure options
	Expert key-value runtime option pairs for setting the ELPA object
	General runtime options
	Runtime options to control the standard solvers
	Runtime options to control (parts of) the generalized EVP solvers
	Expert runtime options for collective MPI operations

	Initialization of MPI and BLACS
	ELPA functions
	elpa2printkernels
	elpaallocate
	elpaautotunedeallocate
	elpaautotuneloadstate
	elpaautotuneprintstate
	elpaautotunesavestate
	elpaautotunesetbest
	elpaautotunesetup
	elpaautotunestep
	elpacholesky
	elpadeallocate
	elpaeigenvalues
	elpaeigenvaluesdouble
	elpaeigenvaluesdoublecomplex
	elpaeigenvaluesfloat
	elpaeigenvaluesfloatcomplex
	elpaeigenvectors
	elpaeigenvectorsdouble
	elpaeigenvectorsdoublecomplex
	elpaeigenvectorsfloat
	elpaeigenvectorsfloatcomplex
	elpageneralizedeigenvalues
	elpageneralizedeigenvectors
	elpagetcommunicators
	elpahermitianmultiply
	elpahermitianmultiplydouble
	elpahermitianmultiplydoublecomplex
	elpahermitianmultiplyfloat
	elpahermitianmultiplyfloatcomplex
	elpainit
	elpainverttriangular
	elpainverttriangulardouble
	elpainverttriangulardoublecomplex
	elpainverttriangularfloat
	elpainverttriangularfloatcomplex
	elpaloadsettings
	elpaprintsettings
	elpaprinttimes
	elpaset
	elpasetup
	elpasetupgpu
	elpaskeweigenvalues
	elpaskeweigenvectors
	elpasolvetridiagonal
	elpastoresettings
	elpatimerstart
	elpatimerstop
	elpauninit

