Eigenvalue SoLvers for Petaflop-Applications (ELPA) 2025.01.002
Loading...
Searching...
No Matches
mod_elpa_pxgemm_multiply.F90 File Reference
#include "config-f90.h"
#include "../general/nvtx_labels.h"
#include "../general/precision_macros.h"
#include "elpa_pxgemm_multiply_template.F90"

Modules

module  elpa_pxgemm_multiply
 

Macros

#define REALCASE   1
 
#define DOUBLE_PRECISION
 
#define REALCASE   1
 
#define SINGLE_PRECISION
 
#define COMPLEXCASE   1
 
#define DOUBLE_PRECISION
 
#define COMPLEXCASE   1
 
#define SINGLE_PRECISION
 

Functions/Subroutines

function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_a_h_a_real_double_impl (obj, trans_a, trans_b, ncb, a, b, ldb, ldbcols, c, ldc, ldccols)
 elpa_pxgemm_multiply_a_h_a_real_double_impl: Performs C : = A**T * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_d_ptr_real_double_impl (obj, trans_a, trans_b, ncb, adev, bdev, ldb, ldbcols, cdev, ldc, ldccols)
 elpa_pxgemm_multiply_d_ptr_real_double_impl: Performs C : = A**T * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_a_h_a_real_single_impl (obj, trans_a, trans_b, ncb, a, b, ldb, ldbcols, c, ldc, ldccols)
 elpa_pxgemm_multiply_real_a_h_a_single_impl: Performs C : = A**T * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_d_ptr_real_single_impl (obj, trans_a, trans_b, ncb, adev, bdev, ldb, ldbcols, cdev, ldc, ldccols)
 elpa_pxgemm_multiply_real_d_ptr_single_impl: Performs C : = A**T * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_a_h_a_complex_double_impl (obj, trans_a, trans_b, ncb, a, b, ldb, ldbcols, c, ldc, ldccols)
 elpa_pxgemm_multiply_a_h_a_complex_double_impl: Performs C : = A**H * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_d_ptr_complex_double_impl (obj, trans_a, trans_b, ncb, adev, bdev, ldb, ldbcols, cdev, ldc, ldccols)
 elpa_pxgemm_multiply_a_h_a_complex_double_impl: Performs C : = A**H * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_a_h_a_complex_single_impl (obj, trans_a, trans_b, ncb, a, b, ldb, ldbcols, c, ldc, ldccols)
 elpa_pxgemm_multiply_a_h_a_complex_single_impl: Performs C : = A**H * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 
function, public elpa_pxgemm_multiply::elpa_pxgemm_multiply_d_ptr_complex_single_impl (obj, trans_a, trans_b, ncb, adev, bdev, ldb, ldbcols, cdev, ldc, ldccols)
 elpa_pxgemm_multiply_d_ptr_complex_single_impl: Performs C : = A**H * B where A is a square matrix (objna,objna) which is optionally upper or lower triangular B is a (objna,ncb) matrix C is a (objna,ncb) matrix where optionally only the upper or lower triangle may be computed
 

Macro Definition Documentation

◆ COMPLEXCASE [1/2]

#define COMPLEXCASE   1

◆ COMPLEXCASE [2/2]

#define COMPLEXCASE   1

◆ DOUBLE_PRECISION [1/2]

#define DOUBLE_PRECISION

◆ DOUBLE_PRECISION [2/2]

#define DOUBLE_PRECISION

◆ REALCASE [1/2]

#define REALCASE   1

◆ REALCASE [2/2]

#define REALCASE   1

◆ SINGLE_PRECISION [1/2]

#define SINGLE_PRECISION

◆ SINGLE_PRECISION [2/2]

#define SINGLE_PRECISION